AlphaZero version 11

This AlphaZero version was trained from scratch on 1.000.000 training examples from the StageFourNoMCTS dataset on various board sizes.

In [1]:
import sys
sys.path.append('..')

import numpy as np
import tensorflow as tf
from tensorflow.python import debug as tf_debug

from keras.callbacks import *
from keras.models import *
from keras.layers import *
from keras.optimizers import *
from keras.initializers import *
from keras.utils.np_utils import to_categorical
from keras.utils import plot_model
import keras.backend as K
from keras.regularizers import l2
from keras.engine.topology import Layer

from PIL import Image
from matplotlib.pyplot import imshow
%matplotlib inline
import random
import gc

from LineFilterLayer import LineFilterLayer
from ValueLayer import ValueLayer

modelPath = 'model/alphaZeroV11.h5'

datasetPath = 'StageFour-AlphaZeroV7-noMCTS-1000000-4x3-23:37-31_05_2018.npz'
Using TensorFlow backend.
In [2]:
print(K.image_data_format()) 
# expected output: channels_last
channels_last
In [3]:
def dotsAndBoxesToCategorical(inputData):
    inp = np.copy(inputData)
    inp[inp == 255] = 1 # Line - comes first so that target data only has two categories
    inp[inp == 65] = 2 # Box A
    inp[inp == 150] = 3 # Box B
    inp[inp == 215] = 4 # Dot
    cat = to_categorical(inp)
    newShape = inp.shape + (cat.shape[-1],)
    return cat.reshape(newShape)
In [4]:
def imgSizeToBoxes(x):
    return (x-3)/2

def lineFilterMatrixNP(imgWidth,imgHeight):
    boxWidth = imgSizeToBoxes(imgWidth)
    boxHeight = imgSizeToBoxes(imgHeight)
    linesCnt = 2*boxWidth*boxHeight+boxWidth+boxHeight
    mat = np.zeros((imgHeight, imgWidth), dtype=np.bool)
    for idx in range(linesCnt):
        y1 = idx / ((2*boxWidth) + 1)
        if idx % ((2*boxWidth) + 1) < boxWidth:
            # horizontal line
            x1 = idx % ((2*boxWidth) + 1)
            x2 = x1 + 1
            y2 = y1
        else:
            # vertical line
            x1 = idx % ((2*boxWidth) + 1) - boxWidth
            x2 = x1
            y2 = y1 + 1
        px = x2 * 2 + y2 - y1
        py = y2 * 2 + x2 - x1
        mat[py,px] = 1
    return mat
In [5]:
def loadPVDataset(datasetPath):
    rawDataset = np.load(datasetPath)
    
    x_input = rawDataset['input']
    y_policy = rawDataset['policy']
    y_value = rawDataset['value']
    
    x_input = dotsAndBoxesToCategorical(x_input)
    y_policy = y_policy[:,lineFilterMatrixNP(y_policy.shape[-1], y_policy.shape[-2])]
    y_policy /= 255
    
    return (x_input, y_policy, y_value)

np.set_printoptions(precision=2)
(x_input, y_policy, y_value) = loadPVDataset(datasetPath)
In [6]:
print(x_input.shape)
print(y_policy.shape)
print(y_value.shape)
print("input:")
print(x_input[0,::,::,1])
print("policy:")
print(y_policy[0])
print('value:')
print(y_value[0])
(1000000, 9, 11, 5)
(1000000, 31)
(1000000, 1)
input:
[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 1. 0. 1. 0. 1. 0. 0.]
 [0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0.]
 [0. 0. 0. 0. 1. 0. 1. 0. 1. 0. 0.]
 [0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 1. 0. 1. 0. 1. 0. 0.]
 [0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0.]
 [0. 0. 1. 0. 1. 0. 1. 0. 1. 0. 0.]
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]
policy:
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
value:
[-0.17]
In [7]:
kernelSize = (5,5)
filterCnt = 128
l2reg = 1e-4
resBlockCnt = 8
imgWidth = x_input.shape[-2]
imgHeight = x_input.shape[-3]

def build_residual_block(x, index):
        in_x = x
        res_name = "res"+str(index)
        x = Conv2D(filters=filterCnt, kernel_size=kernelSize, padding="same",
                   data_format="channels_last", kernel_regularizer=l2(l2reg), 
                   name=res_name+"_conv1_"+str(filterCnt))(x)
        x = BatchNormalization(name=res_name+"_batchnorm1")(x)
        x = Activation("relu",name=res_name+"_relu1")(x)
        x = Conv2D(filters=filterCnt, kernel_size=kernelSize, padding="same",
                   data_format="channels_last", kernel_regularizer=l2(l2reg), 
                   name=res_name+"_conv2-"+str(filterCnt))(x)
        x = BatchNormalization(name="res"+str(index)+"_batchnorm2")(x)
        x = Add(name=res_name+"_add")([in_x, x])
        x = Activation("relu", name=res_name+"_relu2")(x)
        return x


img_input = Input(shape=(None,None,5,))
x = Conv2D(filterCnt, kernelSize, padding='same', kernel_regularizer=l2(l2reg), name="input_conv")(img_input)
x = Activation("relu", name="input_relu")(x)
x = BatchNormalization()(x)

for i in range(resBlockCnt):
    x = build_residual_block(x, i+1)

res_out = x

# policy output
x = Conv2D(1, kernelSize, padding='same', kernel_regularizer=l2(l2reg), name="policy_conv")(x)
x = LineFilterLayer(imgWidth, imgHeight)(x)
x = Activation("softmax", name="policy")(x)
policy_output = x

# value output
x = Conv2D(1, kernelSize, padding='same', kernel_regularizer=l2(l2reg), name="value_conv")(res_out)
#x = Flatten()(x)
#x = Dense(1, trainable=False, kernel_initializer=Constant(1.0/(imgWidth*imgHeight)), use_bias=False, name="value_dense")(x)
x = ValueLayer(imgWidth, imgHeight)(x)
x = Activation("tanh", name="value")(x)
value_output = x
    
model = Model(inputs=img_input, outputs=[policy_output, value_output])
model.compile(optimizer='adam', loss=['categorical_crossentropy', 'mean_squared_error'])

#for layer in model.layers:
#    print("{:30}: {}".format(layer.name, layer.output_shape))
#    if layer.name is 'value_dense':
#        print(layer.kernel)
    
model.summary()
LineFilterLayer with image size 11 x 9
ValueLayer with image size 11 x 9
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_1 (InputLayer)            (None, None, None, 5 0                                            
__________________________________________________________________________________________________
input_conv (Conv2D)             (None, None, None, 1 16128       input_1[0][0]                    
__________________________________________________________________________________________________
input_relu (Activation)         (None, None, None, 1 0           input_conv[0][0]                 
__________________________________________________________________________________________________
batch_normalization_1 (BatchNor (None, None, None, 1 512         input_relu[0][0]                 
__________________________________________________________________________________________________
res1_conv1_128 (Conv2D)         (None, None, None, 1 409728      batch_normalization_1[0][0]      
__________________________________________________________________________________________________
res1_batchnorm1 (BatchNormaliza (None, None, None, 1 512         res1_conv1_128[0][0]             
__________________________________________________________________________________________________
res1_relu1 (Activation)         (None, None, None, 1 0           res1_batchnorm1[0][0]            
__________________________________________________________________________________________________
res1_conv2-128 (Conv2D)         (None, None, None, 1 409728      res1_relu1[0][0]                 
__________________________________________________________________________________________________
res1_batchnorm2 (BatchNormaliza (None, None, None, 1 512         res1_conv2-128[0][0]             
__________________________________________________________________________________________________
res1_add (Add)                  (None, None, None, 1 0           batch_normalization_1[0][0]      
                                                                 res1_batchnorm2[0][0]            
__________________________________________________________________________________________________
res1_relu2 (Activation)         (None, None, None, 1 0           res1_add[0][0]                   
__________________________________________________________________________________________________
res2_conv1_128 (Conv2D)         (None, None, None, 1 409728      res1_relu2[0][0]                 
__________________________________________________________________________________________________
res2_batchnorm1 (BatchNormaliza (None, None, None, 1 512         res2_conv1_128[0][0]             
__________________________________________________________________________________________________
res2_relu1 (Activation)         (None, None, None, 1 0           res2_batchnorm1[0][0]            
__________________________________________________________________________________________________
res2_conv2-128 (Conv2D)         (None, None, None, 1 409728      res2_relu1[0][0]                 
__________________________________________________________________________________________________
res2_batchnorm2 (BatchNormaliza (None, None, None, 1 512         res2_conv2-128[0][0]             
__________________________________________________________________________________________________
res2_add (Add)                  (None, None, None, 1 0           res1_relu2[0][0]                 
                                                                 res2_batchnorm2[0][0]            
__________________________________________________________________________________________________
res2_relu2 (Activation)         (None, None, None, 1 0           res2_add[0][0]                   
__________________________________________________________________________________________________
res3_conv1_128 (Conv2D)         (None, None, None, 1 409728      res2_relu2[0][0]                 
__________________________________________________________________________________________________
res3_batchnorm1 (BatchNormaliza (None, None, None, 1 512         res3_conv1_128[0][0]             
__________________________________________________________________________________________________
res3_relu1 (Activation)         (None, None, None, 1 0           res3_batchnorm1[0][0]            
__________________________________________________________________________________________________
res3_conv2-128 (Conv2D)         (None, None, None, 1 409728      res3_relu1[0][0]                 
__________________________________________________________________________________________________
res3_batchnorm2 (BatchNormaliza (None, None, None, 1 512         res3_conv2-128[0][0]             
__________________________________________________________________________________________________
res3_add (Add)                  (None, None, None, 1 0           res2_relu2[0][0]                 
                                                                 res3_batchnorm2[0][0]            
__________________________________________________________________________________________________
res3_relu2 (Activation)         (None, None, None, 1 0           res3_add[0][0]                   
__________________________________________________________________________________________________
res4_conv1_128 (Conv2D)         (None, None, None, 1 409728      res3_relu2[0][0]                 
__________________________________________________________________________________________________
res4_batchnorm1 (BatchNormaliza (None, None, None, 1 512         res4_conv1_128[0][0]             
__________________________________________________________________________________________________
res4_relu1 (Activation)         (None, None, None, 1 0           res4_batchnorm1[0][0]            
__________________________________________________________________________________________________
res4_conv2-128 (Conv2D)         (None, None, None, 1 409728      res4_relu1[0][0]                 
__________________________________________________________________________________________________
res4_batchnorm2 (BatchNormaliza (None, None, None, 1 512         res4_conv2-128[0][0]             
__________________________________________________________________________________________________
res4_add (Add)                  (None, None, None, 1 0           res3_relu2[0][0]                 
                                                                 res4_batchnorm2[0][0]            
__________________________________________________________________________________________________
res4_relu2 (Activation)         (None, None, None, 1 0           res4_add[0][0]                   
__________________________________________________________________________________________________
res5_conv1_128 (Conv2D)         (None, None, None, 1 409728      res4_relu2[0][0]                 
__________________________________________________________________________________________________
res5_batchnorm1 (BatchNormaliza (None, None, None, 1 512         res5_conv1_128[0][0]             
__________________________________________________________________________________________________
res5_relu1 (Activation)         (None, None, None, 1 0           res5_batchnorm1[0][0]            
__________________________________________________________________________________________________
res5_conv2-128 (Conv2D)         (None, None, None, 1 409728      res5_relu1[0][0]                 
__________________________________________________________________________________________________
res5_batchnorm2 (BatchNormaliza (None, None, None, 1 512         res5_conv2-128[0][0]             
__________________________________________________________________________________________________
res5_add (Add)                  (None, None, None, 1 0           res4_relu2[0][0]                 
                                                                 res5_batchnorm2[0][0]            
__________________________________________________________________________________________________
res5_relu2 (Activation)         (None, None, None, 1 0           res5_add[0][0]                   
__________________________________________________________________________________________________
res6_conv1_128 (Conv2D)         (None, None, None, 1 409728      res5_relu2[0][0]                 
__________________________________________________________________________________________________
res6_batchnorm1 (BatchNormaliza (None, None, None, 1 512         res6_conv1_128[0][0]             
__________________________________________________________________________________________________
res6_relu1 (Activation)         (None, None, None, 1 0           res6_batchnorm1[0][0]            
__________________________________________________________________________________________________
res6_conv2-128 (Conv2D)         (None, None, None, 1 409728      res6_relu1[0][0]                 
__________________________________________________________________________________________________
res6_batchnorm2 (BatchNormaliza (None, None, None, 1 512         res6_conv2-128[0][0]             
__________________________________________________________________________________________________
res6_add (Add)                  (None, None, None, 1 0           res5_relu2[0][0]                 
                                                                 res6_batchnorm2[0][0]            
__________________________________________________________________________________________________
res6_relu2 (Activation)         (None, None, None, 1 0           res6_add[0][0]                   
__________________________________________________________________________________________________
res7_conv1_128 (Conv2D)         (None, None, None, 1 409728      res6_relu2[0][0]                 
__________________________________________________________________________________________________
res7_batchnorm1 (BatchNormaliza (None, None, None, 1 512         res7_conv1_128[0][0]             
__________________________________________________________________________________________________
res7_relu1 (Activation)         (None, None, None, 1 0           res7_batchnorm1[0][0]            
__________________________________________________________________________________________________
res7_conv2-128 (Conv2D)         (None, None, None, 1 409728      res7_relu1[0][0]                 
__________________________________________________________________________________________________
res7_batchnorm2 (BatchNormaliza (None, None, None, 1 512         res7_conv2-128[0][0]             
__________________________________________________________________________________________________
res7_add (Add)                  (None, None, None, 1 0           res6_relu2[0][0]                 
                                                                 res7_batchnorm2[0][0]            
__________________________________________________________________________________________________
res7_relu2 (Activation)         (None, None, None, 1 0           res7_add[0][0]                   
__________________________________________________________________________________________________
res8_conv1_128 (Conv2D)         (None, None, None, 1 409728      res7_relu2[0][0]                 
__________________________________________________________________________________________________
res8_batchnorm1 (BatchNormaliza (None, None, None, 1 512         res8_conv1_128[0][0]             
__________________________________________________________________________________________________
res8_relu1 (Activation)         (None, None, None, 1 0           res8_batchnorm1[0][0]            
__________________________________________________________________________________________________
res8_conv2-128 (Conv2D)         (None, None, None, 1 409728      res8_relu1[0][0]                 
__________________________________________________________________________________________________
res8_batchnorm2 (BatchNormaliza (None, None, None, 1 512         res8_conv2-128[0][0]             
__________________________________________________________________________________________________
res8_add (Add)                  (None, None, None, 1 0           res7_relu2[0][0]                 
                                                                 res8_batchnorm2[0][0]            
__________________________________________________________________________________________________
res8_relu2 (Activation)         (None, None, None, 1 0           res8_add[0][0]                   
__________________________________________________________________________________________________
policy_conv (Conv2D)            (None, None, None, 1 3201        res8_relu2[0][0]                 
__________________________________________________________________________________________________
value_conv (Conv2D)             (None, None, None, 1 3201        res8_relu2[0][0]                 
__________________________________________________________________________________________________
line_filter_layer_1 (LineFilter (None, None)         0           policy_conv[0][0]                
__________________________________________________________________________________________________
value_layer_1 (ValueLayer)      (None, 1)            0           value_conv[0][0]                 
__________________________________________________________________________________________________
policy (Activation)             (None, None)         0           line_filter_layer_1[0][0]        
__________________________________________________________________________________________________
value (Activation)              (None, 1)            0           value_layer_1[0][0]              
==================================================================================================
Total params: 6,586,882
Trainable params: 6,582,530
Non-trainable params: 4,352
__________________________________________________________________________________________________
In [9]:
#sess = K.get_session()
#sess = tf_debug.LocalCLIDebugWrapperSession(sess)
#K.set_session(sess)

# Training
callbacks = []

checkpoint = ModelCheckpoint(filepath=modelPath+".checkpoint", save_weights_only=False)
callbacks.append(checkpoint)

progbar = ProgbarLogger()
callbacks.append(progbar)

tensorboard = TensorBoard(log_dir='model/log2', write_grads=True, write_graph=True, write_images=True, histogram_freq=1)
#callbacks.append(tensorboard)

model.fit(x_input, [y_policy, y_value], epochs=2, batch_size=64, callbacks=callbacks, validation_split=0.001)

model.save(modelPath)
Train on 999000 samples, validate on 1000 samples
Epoch 1/2
Epoch 1/2
999000/999000 [==============================] - 4691s 5ms/step - loss: 1.4390 - policy_loss: 0.5548 - value_loss: 0.7304 - val_loss: 0.7435 - val_policy_loss: 0.4760 - val_value_loss: 0.1198
999000/999000 [==============================] - 4693s 5ms/step - loss: 1.4390 - policy_loss: 0.5548 - value_loss: 0.7304 - val_loss: 0.7435 - val_policy_loss: 0.4760 - val_value_loss: 0.1198
Epoch 2/2
Epoch 2/2
107200/999000 [==>...........................] - ETA: 1:13:04 - loss: 0.7889 - policy_loss: 0.5122 - value_loss: 0.1143
---------------------------------------------------------------------------
KeyboardInterrupt                         Traceback (most recent call last)
<ipython-input-9-0875ac397bc6> in <module>()
     15 #callbacks.append(tensorboard)
     16 
---> 17 model.fit(x_input, [y_policy, y_value], epochs=2, batch_size=64, callbacks=callbacks, validation_split=0.001)
     18 
     19 model.save(modelPath)

/usr/lib/python2.7/site-packages/keras/engine/training.pyc in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs)
   1703                               initial_epoch=initial_epoch,
   1704                               steps_per_epoch=steps_per_epoch,
-> 1705                               validation_steps=validation_steps)
   1706 
   1707     def evaluate(self, x=None, y=None,

/usr/lib/python2.7/site-packages/keras/engine/training.pyc in _fit_loop(self, f, ins, out_labels, batch_size, epochs, verbose, callbacks, val_f, val_ins, shuffle, callback_metrics, initial_epoch, steps_per_epoch, validation_steps)
   1233                         ins_batch[i] = ins_batch[i].toarray()
   1234 
-> 1235                     outs = f(ins_batch)
   1236                     if not isinstance(outs, list):
   1237                         outs = [outs]

/usr/lib/python2.7/site-packages/keras/backend/tensorflow_backend.pyc in __call__(self, inputs)
   2476         session = get_session()
   2477         updated = session.run(fetches=fetches, feed_dict=feed_dict,
-> 2478                               **self.session_kwargs)
   2479         return updated[:len(self.outputs)]
   2480 

/usr/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in run(self, fetches, feed_dict, options, run_metadata)
    898     try:
    899       result = self._run(None, fetches, feed_dict, options_ptr,
--> 900                          run_metadata_ptr)
    901       if run_metadata:
    902         proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)

/usr/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in _run(self, handle, fetches, feed_dict, options, run_metadata)
   1133     if final_fetches or final_targets or (handle and feed_dict_tensor):
   1134       results = self._do_run(handle, final_targets, final_fetches,
-> 1135                              feed_dict_tensor, options, run_metadata)
   1136     else:
   1137       results = []

/usr/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
   1314     if handle is None:
   1315       return self._do_call(_run_fn, feeds, fetches, targets, options,
-> 1316                            run_metadata)
   1317     else:
   1318       return self._do_call(_prun_fn, handle, feeds, fetches)

/usr/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in _do_call(self, fn, *args)
   1320   def _do_call(self, fn, *args):
   1321     try:
-> 1322       return fn(*args)
   1323     except errors.OpError as e:
   1324       message = compat.as_text(e.message)

/usr/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in _run_fn(feed_dict, fetch_list, target_list, options, run_metadata)
   1305       self._extend_graph()
   1306       return self._call_tf_sessionrun(
-> 1307           options, feed_dict, fetch_list, target_list, run_metadata)
   1308 
   1309     def _prun_fn(handle, feed_dict, fetch_list):

/usr/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in _call_tf_sessionrun(self, options, feed_dict, fetch_list, target_list, run_metadata)
   1407       return tf_session.TF_SessionRun_wrapper(
   1408           self._session, options, feed_dict, fetch_list, target_list,
-> 1409           run_metadata)
   1410     else:
   1411       with errors.raise_exception_on_not_ok_status() as status:

KeyboardInterrupt: 
In [10]:
model.save(modelPath)
In [11]:
def linesToDotsAndBoxesImage(lines, imgWidth, imgHeight):
    boxWidth = imgSizeToBoxes(imgWidth)
    boxHeight = imgSizeToBoxes(imgHeight)
    linesCnt = 2*boxWidth*boxHeight+boxWidth+boxHeight
    mat = np.zeros((imgHeight, imgWidth), dtype=lines.dtype)
    for idx in range(linesCnt):
        y1 = idx / ((2*boxWidth) + 1)
        if idx % ((2*boxWidth) + 1) < boxWidth:
            # horizontal line
            x1 = idx % ((2*boxWidth) + 1)
            x2 = x1 + 1
            y2 = y1
        else:
            # vertical line
            x1 = idx % ((2*boxWidth) + 1) - boxWidth
            x2 = x1
            y2 = y1 + 1
        px = x2 * 2 + y2 - y1
        py = y2 * 2 + x2 - x1
        mat[py,px] = lines[idx]
    return mat
In [12]:
example = random.randrange(x_input.shape[0])
print("example: "+str(example))

input_data = x_input[example:example+1]

(prediction_lines, prediction_value) = model.predict(input_data)
prediction_lines_print = prediction_lines * 100
print(prediction_lines_print.astype(np.uint8))
print(np.sum(prediction_lines))
prediction = linesToDotsAndBoxesImage(prediction_lines[0], imgWidth, imgHeight)

# print input data
input_data_print = x_input[example,:,:,1] 
input_data_print = input_data_print.astype(np.uint8)
print("input "+str(input_data_print.shape)+": ")
print(input_data_print)

# generate greyscale image data from input data
planes = [1,2,3,4]
input_imgdata = np.sum(x_input[example,:,:,1:], axis=-1) * 255
input_imgdata = input_imgdata.astype(np.uint8)

# print prediction
prediction_data_print = prediction * 100 
prediction_data_print = prediction_data_print.astype(np.uint8)
print("prediction policy: ")
print(prediction_data_print)

print("prediction value: ")
print(prediction_value)

print("target value: ")
print(y_value[example])

# generate greyscale image data from prediction data
prediction_imgdata = prediction * 255
prediction_imgdata = prediction_imgdata.astype(np.uint8)

# generate greyscale image of target data
target_imgdata = linesToDotsAndBoxesImage(y_policy[example], imgWidth, imgHeight) * 255

# merge image data in color channels
merged_imgdata = np.stack([input_imgdata, prediction_imgdata, target_imgdata], axis=2)

#create image
img = Image.fromarray(merged_imgdata, 'RGB')
img = img.resize(size=(img.size[0]*10, img.size[1]*10))

img
example: 408113
[[ 0  0  0 33  0  0  0  0 19  0  0  0 15  0  0 20  9  0  0  0  0  0  0  0
   0  0  0  0  0  0  0]]
1.0
input (9, 11): 
[[0 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0 0]
 [0 1 0 1 0 1 0 1 0 0 0]
 [0 0 0 0 0 0 0 0 0 0 0]
 [0 1 0 0 0 0 0 0 0 1 0]
 [0 0 1 0 1 0 0 0 0 0 0]
 [0 1 0 0 0 0 0 1 0 1 0]
 [0 0 0 0 0 0 1 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0 0]]
prediction policy: 
[[ 0  0  0  0  0  0  0  0  0  0  0]
 [ 0  0  0  0  0  0  0  0 33  0  0]
 [ 0  0  0  0  0  0  0  0  0 19  0]
 [ 0  0  0  0  0  0  0  0 15  0  0]
 [ 0  0  0  0  0 20  0  9  0  0  0]
 [ 0  0  0  0  0  0  0  0  0  0  0]
 [ 0  0  0  0  0  0  0  0  0  0  0]
 [ 0  0  0  0  0  0  0  0  0  0  0]
 [ 0  0  0  0  0  0  0  0  0  0  0]]
prediction value: 
[[0.1]]
target value: 
[0.5]
Out[12]:
In [ ]: