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Abstract

This thesis presents a novel approach to implementing the
AlphaZero algorithm that has been the driving force behind
the success of AlphaGo. Instead of Go, Chess or Shogi, this
incarnation plays the game Dots and Boxes, which resembles
Go in terms of complexity. Motivated by the central research
question of how to reach a high playing strength while using
far less resources than AlphaGo, this work explores various
techniques to reduce resource requirements. Reduced com-
putational demand is reached by training a scaled down,
fully convolutional neural network on very small instances
of Dots and Boxes. Experiments show that the network is
able to transfer learned strategies to far larger boards with-
out any significant loss of playing strength. Further exper-
iments prove that it is possible to find new strategies and
improve playing strength by using self-play reinforcement
learning. A final evaluation against other AI opponents for
Dots and Boxes shows that AlphaDots does not reach state
of the art performance with the prescribed amount of train-
ing.
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1. Introduction

1. Introduction

This thesis is about applying the methods employed in AlphaGo, AlphaGo Zero
and AlphaZero to the game Dots and Boxes. First an overview of Dots and Boxes,
machine learning and AlphaGo establishes a basic understanding of the major top-
ics.Afterwards section 2 presents the research questions which look for ways to repli-
cate the success of AlphaGo while using far less resources. The research questions are
followed by an in-depth discussion of related work, such as machine learning tech-
niques, advanced strategies for Dots and Boxes and the inner workings of AlphaGo
and its successors. Subsequently the thesis presents the methods that were used to
adapt AlphaZero to Dots and Boxes, including a novel approach to designing neural
networks that can play on boards of arbitrary size. Another major part of this thesis
will be the evaluation of the newly developed AI by comparing it with various existing
implementations. Answers to the posed research questions conclude the thesis.

1.1. Dots and Boxes

Dots and Boxes is a simple game for two players. It is played on a grid of dots. Players
alternately connect two adjacent dots with a line. When a player draws the last line of
a box, it is captured by that player, who then has to draw another line. The game ends
when all lines are drawn. The player who captured the most boxes wins the game.
Figure 1 shows an example game.

Dots and Boxes can be played on boards of arbitrary size. Due to the many possible
actions in each turn, the game offers a large search space on bigger boards. For exam-
ple a 14 × 14 Dots and Boxes game has about the same average branching factor as the
game of Go on a standard 19 × 19 board. Simple rules and a large search space in Dots
and Boxes make for a good test bed to replicate AlphaGo’s methods. In comparison to
Chess or Go the game received little attention by researchers – for example there is no
proof for complexity of finding an optimal strategy on a board of arbitrary size.

There are a few publications on Dots and Boxes that describe strategies for the game,
the most notable being a book [Ber00] by Elwyn Berlekamp. Among other things, he
describes the typical course a game takes and details strategies that might be employed
in optimal play. In the beginning of the game players mostly avoid to give away boxes
to their opponent. As a consequence chains of connected, not yet captured boxes form
on the field. A chain is made of connected boxes that can be captured in one go after
the chain was opened, which means that all boxes can be captured when one line is
drawn inside the chain. When no more lines are available that do not give away boxes,
players are forced to open chains for their opponent. Usually they count the number
of boxes in the chains and give away the shortest one.

Berlekamp describes an important strategy to play Dots and Boxes which is called
Double Dealing. It enables a player to stay in control of the game by not fully capturing
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1. Introduction

chains, but leaving two or four boxes for the opponent, who in turn has to open the
next chain after capturing the leftover boxes. Figure 1 shows a full example game
that features Double Dealing in turn 15. Section 3 provides an in-depth explanation
of the game’s rules and strategies, including a more advanced strategy than Double
Dealing.

1.2. Machine learning

Recent increases in computational power have given rise to the successful application
of machine learning techniques, especially to using neural networks in various do-
mains. The work of Schmidhuber [Sch15] provides a thorough overview of neural
network techniques. For this thesis the focus is on using artificial neural networks to
play Dots and Boxes. Artificial neural network is an umbrella term for machine learn-
ing techniques that are loosely inspired by biological neural networks found in brains.
They share the principle that there is a network built of neurons that are connected
with each other. Input is fed into the network, which processes it to generate an
output.

Using an artificial neural network usually works as follows: First the network is
trained by supervised learning which adapts the network’s parameters until its output
matches the desired value for a given input. This is done by providing the network
with example input data, which it then processes to an output. Subsequently the
network’s output is evaluated by comparing it to the expected output data. After suc-
cessful training, the network is deployed to solve its assigned task on new, previously
unseen data.

Training a network works by presenting the network with an input and then compar-
ing its output with the expected result. The difference between the network’s output
and the expected result is used to adapt the network so that later passes match the
expectations more closely. Later sections will explain the required principles in more
detail.

Training neural networks works best when a large amount of training data is available,
because the parameters of the network must be adapted to match a general pattern in
the data. If there are just a few examples, there is a high probability that the network
overfits the data and thus only works correctly for the few given examples but fails to
generalize to the actual task at hand.

1.3. Search algorithms

Strong game playing engines are often based on search algorithms, which simulate
many possible outcomes of the game to find the best move. Other approaches to im-
plementing computer opponents rely on hand crafted rules that govern the behavior.
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1. Introduction

Playing a game by a predefined set of rules usually is very fast, but might lack the abil-
ity to handle complex special cases. Conversely, searching through all available actions
can take a very long time, but will yield optimal results in an exhaustive search.

To improve the speed of search algorithms, it is possible to enhance the search with
heuristics, which offer a fast, rule based assessment of a given situation. In the past1,
heuristics often were complex hand crafted functions that estimated the probability
to win the game. Crafting these heuristics is specific to a single type of game and
typically requires intricate knowledge of the game.

The AlphaGo search algorithm combines a very successful search algorithm with a
somewhat automated way to craft a good heuristic by using neural networks. Training
a neural network removes the need to manually write complex code to assess games.
Nevertheless it is still necessary to design and train a neural network, which introduces
other hardships like providing adequate training data. AlphaGo uses neural networks
in combination with Monte-Carlo Tree Search – a search algorithm which yields better
results than previous approaches to highly complex search spaces like the game of Go.
[Gel+12]

In it’s original form, Monte-Carlo Tree Search (MCTS) analyses a given situation by
repeatedly executing four steps, one of which plays random moves until the game is
over. The steps are called Selection, Expansion, Simulation and Backpropagation. During
the first step, MCTS traverses an internal tree structure that represents the successive
states of the game which it already explored until it reaches a leaf node. Selection of
the traversed path is governed by a formula that balances exploring new moves with
exploiting known strong moves. A node in the tree represents a board configuration,
while an edge between two nodes represents the action to get from one state to the
other. After a leaf node has been selected, it is expanded, which means that all valid
successive states are added to the tree. Then for the simulation step, beginning with
the state of the selected leaf node, the game is played to the end by random moves.
Finally the score of the simulated game is propagated backwards through the initially
selected path, updating each node’s value with the new result. [Cha10]

Repeatedly playing games with random moves is the inspiration for the algorithm’s
name, because of the well known Monte-Carlo Casino in Monaco. By executing suffi-
ciently many games, the algorithm slowly converges to an optimal result and eventu-
ally explores all possible options. After a set number of iterations, Monte-Carlo Tree
Search selects the action that has been explored most often.

Instead of the original MCTS algorithm, AlphaGo employs a modified version that
does not play games with random moves to get a final score to propagate through the
tree, but uses a neural network to predict the result. AlphaGo’s neural network does
two things at once – given a board configuration as input, it provides a probability
distribution over all legal moves and an assessment of the chance to win the game.
The modified version of MCTS uses the network’s output to guide the search towards

1See for example this paper from 1989 about using heuristics in alpha-beta search for chess [Sch89]
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1. Introduction

profitable moves while it also explores new moves that were not recommended by the
network. As a result it finds far stronger moves than the original network. [Sil+16;
Gel+12]

A key ingredient to the success of AlphaGo is its ability to improve itself. It does
so by utilizing self-play reinforcement learning where it plays against itself and si-
multaneously trains its neural network to reflect the improved strategies found with
MCTS. There are three parts of AlphaGo that operate in parallel: One module plays
the game against itself with the best available neural network, another module trains
neural networks with the data that was generated in self-play while a third module
evaluates neural networks to determine the best one. To create a strong instance of
AlphaGo, the authors let the algorithm train the neural network in self-play for three
weeks. They distributed the task to 50 graphics processing units (GPU) on multiple
machines. [Sil+17a]

Later sections will discuss the algorithm in more detail. There will also be further
explanations of how heuristics and neural networks tie into search algorithms.

1.4. Related work

Some parts of this thesis build upon the related bachelor’s thesis [Pet15] by the same
author. The thesis is about applying the minimax search algorithm with alpha-beta
pruning and various other enhancements to Dots and Boxes. Besides minimax, the
thesis also covered a basic version of Monte-Carlo Tree Search that used the simple,
rule based Easy, Medium and Hard AIs in KSquares for the rollouts. The framework
for evaluating the playing strength of various implementations against each other is
reused in this thesis.

QDab as described in [Zhu14] is the best currently available opponent in Dots and
Boxes according to the evaluation in [Pet15]. It is built using Monte-Carlo Tree Search
and a fully connected neural network which requires a smartly selected set of features
extracted from a given board state to play Dots and Boxes on a 5 × 5 board. QDab
is restricted to playing Dots and Boxes on 5 × 5 boards because the neural network
and other parts of the implementation can not handle different board sizes. Its neural
network is fed with a set of features that are extracted from the board. Among other
things, the features represent 12 different types of chains. The internal representation
of the game utilizes the Strings and Coins format that is described in section 3.2.

In March 2016, AlphaGo beat the world champion in Go and thus achieving a historic
breakthrough that can be compared to the game of chess between Garry Kasparov and
Deep Blue in 1997. Before AlphaGo, computer programs that play Go were only able
to beat amateur players. The methods that were used in AlphaGo are described in the
paper Mastering the game of Go with deep neural networks and tree search. [Sil+16] Since
this thesis is about replicating the methods of AlphaGo and its direct descendants
[Sil+17b; Sil+17a] for Dots and Boxes, this thesis is named after the initial paper about
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1. Introduction

AlphaGo with only the name of the game changed. As the title suggests, the main
components of AlphaGo, AlphaGo Zero [Sil+17b] and AlphaZero [Sil+17a] are neural
networks and Monte-Carlo Tree Search. This thesis will go into detail on the concepts
that form the basis for the application of AlphaGo’s methods to Dots and Boxes. A key
aspect of AlphaGo is that during training the algorithm improves itself with self-play
reinforcement learning.

AlphaGo Zero is a streamlined version of AlphaGo that does not rely on human train-
ing data, while AlphaZero is the general form of the algorithm that was evaluated
on Chess and Shogi. Consequently, this thesis calls its implementation AlphaDots or
AlphaZero for Dots and Boxes.

In 1998 Weaver et. al. tried to train and evolve a simple feed forward neural network
with one input, one hidden and one output layer to play Dots and Boxes with little to
no success. [WB98]

There is a noteworthy book about Dots and Boxes written by Elwyn Berlekamp.
[Ber00] It covers strategies for the game and offers many examples of challenging
board configurations, some of which were used as tests when implementing the Al-
phaDots algorithm. Besides the book about Dots and Boxes, Elwyn Berlekamp also
contributed a chapter about Dots and Boxes to the book Winning Ways for Your Mathe-
matical Plays: Volume 3 that explains strategies for Dots and Boxes and provides math-
ematical insight into the game. [BCG03]

Dots and Boxes was solved for small board configurations up to 5 × 4 boxes by Barker
et. al. in 2012. [BK12] The authors relied on symmetric properties and other features
of Dots and Boxes to reduce the search space when they computed all possible moves.
For a special type of endgame in Dots and Boxes the authors of Playing simple loony
Dots and Boxes endgames optimally provide an optimal strategy. [BC14]
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2. Research questions

2. Research questions

The overarching goal of this thesis is to research an opponent for Dots and Boxes that is
based on Monte-Carlo Tree Search combined with deep neural networks as described
in the papers about AlphaGo, AlphaGo Zero and AlphaZero. [Sil+16; Sil+17b; Sil+17a]
This thesis’ research questions are aligned along that goal. Although this work seeks
to apply the methods of AlphaZero, its emphasis is to keep the hardware requirements
to an affordable minimum.

Beginning with the implementation of different neural networks, the thesis will try to
replicate a policy-value network that is able to play Dots and Boxes. Before designing
and training neural networks, it is necessary to provide suitable training data on which
the networks can operate. Training a neural network should not take longer than three
days on a modern GPU so that it is possible to replicate the results within an acceptable
timeframe. After training, the network needs to be easily accessible within a usable
interface.

After implementing a neural network that can play Dots and Boxes, it has to be tied
into an implementation of Monte-Carlo Tree Search to create an integral part of the
AlphaZero algorithm. By using Monte-Carlo Tree Search (MCTS) that utilizes the
output of a neural network to find better moves than the network itself, it should be
possible to create better training data for the neural network. Further training on the
improved data should result in a network that makes better moves. Consequently
it should then be possible to implement a training loop where the network steadily
improves by self-play, thus constituting a working AlphaZero algorithm for Dots and
Boxes.

The following research questions are to provide the major topics of this master’s the-
sis.

1. How can the results of AlphaGo Zero be replicated for Dots and Boxes with far
less resources?

2. How well does a convolutional neural network lend itself to playing Dots and
Boxes on varying board sizes?

3. Is it possible to find new strategies (e.g. Double Dealing) by training a neural
network with reinforcement learning in self-play?

4. What is the playing strength of the newly implemented AIs?

10



2. Research questions

2.1. Is is possible to implement AlphaZero with less resources?

Can good results be reached with less resources than those of AlphaGo?

According to the publications on AlphaGo, AlphaGo Zero and AlphaZero, the au-
thors used a humongous amount of computational resources to train their neural net-
works. The policy network for AlphaGo was first trained on 29.4 million positions
from 160,000 games on 50 GPUs for three weeks. Afterwards the policy network was
trained by self-play reinforcement learning using 50 GPUs for a week. [Sil+16] For
AlphaGo Zero there were two versions: one “small” version with 20 blocks that was
trained on 64 GPUs for 3 days and a large version with 40 blocks that was trained on
64 GPUs for 40 days. [Sil+17b] The authors of the AlphaZero paper state that they
used 64 TPUs2 [Sil+17a]

For this thesis there are far less resources available. Consequently, the central research
question is if comparable results can be reached with just one GPU and a maximum of
three days for training. Furthermore using less resources will benefit the reproducibil-
ity of the presented results. Reducing the amount of required resources will guide the
design decisions and direction of research of this thesis.

2.2. Is it possible for the same network to play on varying board sizes?

How well does a convolutional neural network lend itself to playing Dots and Boxes on varying
board sizes?

Humans play Dots and Boxes on board of many different sizes and shapes. It is com-
mon to mark an arbitrary area on quad paper and use it as game board. Consequently
an algorithm that plays Dots and Boxes should ideally be able to play on arbitrary
boards. If a neural network could play on boards of various size, would it be able to
transfer the strategies it learned on one particular type of board to another one?

To answer the research question, a neural network must be devised and trained to play
Dots and Boxes on different board sizes. The network should be able to play the game
on differently sized boards without adapting the weights for the given environment. If
the network is able to play well on unknown board sizes, it probably has found some
strategies that apply to Dots and Boxes in general. It should at least be able to avoid
giving away boxes prematurely and furthermore it should ideally open short chains
first before it opens long chains. Section 3.3 defines the different types of chains in
Dots and Boxes.

Before any training can commence, two things are required first:

• A network architecture has to be defined that is able to play on various boards.

2TPU is short for Tensor Processing Unit – a specialized piece of hardware for operating on neural
networks. [Jou+17]
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2. Research questions

• There has to be training data on which the network can be trained.

The design of the network’s architecture and the composition of the training data are
key issues for this research question. Besides these design decisions, the evaluation
results will provide answers to the posed question.

2.3. Do new strategies emerge from self-play?

Is it possible to find new strategies (e.g. Double Dealing) by training a neural network with
reinforcement learning in self-play?

To answer this question, a self-play reinforcement learning method must be imple-
mented for Dots and Boxes. It should be an algorithm like AlphaGo that is able to
improve its playing strength by competing against itself. Ideally it should not be as
resource intensive as AlphaGo so that it is possible to reproduce the results with just
a single GPU in an acceptable time.

In Berlekamp’s chapter on Dots and Boxes in the book Winning Ways Volume 3, he
describes a list of insights into Dots and Boxes that human players can gather. His first
example is “you don’t just open up any boxes unless you have to and then you open
as few as possible.” [BCG03, p. 569] This basic level of proficiency in Dots and Boxes
could be used as a starting point from which new strategies can be learned in self-play
under the assumption that it is possible to train a neural network to play Dots and
Boxes in the first place.

Besides a neural network that can play Dots and Boxes at a basic level, there needs
to be a policy improvement operator. [SB+98] A policy defines the behaviour of an
agent (here: neural network or AI) for any given situation. Accordingly a policy
improvement operator is a mechanism that improves the policy in terms of playing
strength. So for this case there needs to be an algorithm that improves the output of
a neural network. For this the authors of AlphaGo use a variant of Monte-Carlo Tree
Search (MCTS) as their policy improvement operator. The employed version of MCTS
utilizes “contextual side information” provided by the neural network to find even
better moves – the network guides MCTS by providing it with an assessment of the
given board position. [Ros11] As this thesis orients itself to the methods of AlphaGo,
a similar approach might be viable to create an algorithm that is able to improve its
own play and find new strategies.

If the algorithm is able to consistently apply Double Dealing after starting with a
network that has not seen a single instance of Double Dealing, it could be considered
as a success. To be sure that the reason for the consistent application of Double Dealing
lies in the improvement brought by self-play reinforcement learning, the algorithm
should be able to use Double Dealing only after training in self-play.
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2. Research questions

2.4. How well do the new AIs play?

What is the playing strength of the newly implemented AIs?

After investigating various aspects of the AlphaZero algorithm, it would be interesting
to compare its performance with the state of the art. As of writing this thesis, the best
known AI for Dots and Boxes is QDab according to the evaluation in [Pet15]. Like
AlphaZero, QDab is based on Monte-Carlo Tree Search in combination with a neural
network to search for the best move. In contrast to the deep convolutional neural
network of AlphaZero, the neural network of QDab only has three layers and is fed
with hand-crafted features. QDab is restricted to playing on boards of 5 × 5 boxes. Its
playing strength exceeds all other approaches that were investigated in [Pet15].

To answer the question of how the newly implemented AIs compare to the state of the
art that is represented by QDab, they play games against each other. There already
exists a framework for comparing various Dots and Boxes AIs which was built for
the bachelor’s thesis [Pet15] of the same author as this thesis. The framework will
be extended and used to compare the various neural networks and Monte-Carlo Tree
Search algorithms with other AIs.
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3. Dots and Boxes

3. Dots and Boxes

Dots and Boxes is a well known pen and paper game for two players. Despite its sim-
ple rules, Dots and Boxes offers a challengingly high complexity on larger boards. This
chapter first describes the game’s rules and then goes on to describe further aspects
that are important for understanding and playing the game reasonably well. Finally
there is a short probe into the theoretical properties of Dots and Boxes, including a
take on its complexity.

3.1. Rules

The game is played on an m × n grid of dots where the players alternately draw a
horizontal or vertical line between two adjacent dots. Gradually squares are formed,
which are the so-called boxes. By drawing the fourth side of a box, a player completes
and captures it. If a player completes two boxes with one line, still only one more line
must be drawn. When there are no lines left to draw, the game ends. The player with
the most captured boxes wins the game. Depending on the size of the board, there
can be an even number of boxes so that a game may end in a draw.

Figure 1 presents a full game, played from start to finish by the players A and B on a 3

× 3 board. The first and third column show the turns made by the first player, while
the second and fourth column represent the other player’s moves. Turns in the game
are numbered from left to right and from top to bottom. During the first 13 moves
only one line is added in each turn. Beginning with the 14th turn, the players draw
more than one line per turn, because they captured boxes. When a player added more
than one line in a turn, the order of added lines is denoted by small numbers next
to the newly drawn lines. At the end player A wins the game with 5 captured boxes
versus 4 boxes for player B.

Arising from the simple rules of the game, there are a few further aspects to be under-
stood when talking about Dots and Boxes. Consequently, the next three sections will
discuss another board representation, chains and phases in Dots and Boxes.

3.2. Strings and Coins

There is a dual, more general representation of every Dots and Boxes game called
Strings and Coins. Boxes are represented by coins, which are initially held by four
strings. Drawing a line in Dots and Boxes corresponds to cutting a string in Strings and
Coins. When all strings of a coin are cut, the player captures the coin. Figure 2 shows
a Dots and Boxes game side by side with its Strings and Coins representation.

Strings and Coins might offer a more accessible understanding of chains in Dots and
Boxes, which will be explained in the next section.
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3. Dots and Boxes

Player A Player B Player A Player B

1 2 3 4

5 6 7 8

9 10 11 12

B

B

1

2

3 A

B

B

1

2 B B A

B

B

1

2

13 14 15 16

B B A

B A A

B A A

1

2

3 4

17

Figure 1: A game of Dots and Boxes, as shown in [Pet15] and based on figure 2 on
page 4 in [Ber00]
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3. Dots and Boxes

Dots and Boxes board Strings and Coins board

B

B
B

B

Figure 2: The same game displayed on a normal Dots and Boxes board and on a Strings
and Coins board

3.3. Chains

One key aspect of Dots and Boxes are chains: They form during the game and are
made of connected boxes which are close to capture. If a line is drawn inside a chain,
no box is captured by the current player, but the next player can capture all boxes of
the chain.

Figure 3: Three types of chains, shown on a Dots and Boxes board, on a Strings and
Coins board and on a Strings and Coins board with marked chains

Figure 3 provides an example of different chains. The figure shows the same game
three times, but in different representations. The left representation uses the typical
Dots and Boxes board, where it is not always easy to discover chains with the naked
eye. With the Strings and Coins board that is used for the other two representations,
chains are separate entities.

Chains can be categorized in three distinct types:
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Short Chain A Short Chain consists of one or two coins / boxes. They bear a strategic
difference to long chains, because it is possible to prevent Double Dealing. Figure
3 shows a Short Chain that is marked by dotted lines.

Long Chain A Long Chain is made of at least three coins / boxes. Opening a long
chain enables the opponent to take control of the game by Double Dealing. Fig-
ure 3 shows a Long Chain that is marked by dashed lines.

Cyclic Chain A Cyclyc Chain is made of an even number of coins / boxes that form
a cycle. In terms of control, a Cyclyc Chain behaves like a Long Chain with
the distinction that Double Dealing costs twice as many coins / boxes. Figure 3

shows a Cyclic Chain that is marked by solid lines.

3.4. Phases

During a game of Dots and Boxes, there is a point where all moves that are left will
give away one or more boxes to the opponent. This event can be seen as the dividing
point between two main phases of the game. In the first phase, the players mostly
avoid to give away boxes and decide about the shape the game will take. Then, in
the second phase, it is no longer possible to avoid giving away boxes and the players
usually open short chains first to give away as few boxes as possible.

Since the chains are formed during the first phase, it could be called the forming
phase. Correspondingly the second phase might be called endgame phase, because
the competitors get their scores. In his book on page 81, Elwyn Berlekamp describes
certain typical milestones of a Dots and Boxes game. [Ber00]

3.4.1. The forming phase

Beginning with an empty board, the players make their moves, with which they slowly
create chains. It is during this phase of forming chains that the winner of the game
is decided. Since the shape of the board will be the base on which the endgame will
happen, forming that shape decides who will win.

Due to the fact that there are many possible moves that each player can make, the
game has a high branching factor in the forming phase. As a result, the search space
is rather large, especially on larger boards.

During the forming phase the winner of the game is decided when both opponents
play according to an optimal strategy. In the endgame phase, the final score of the
game is usually very clear. To get the upper hand an optimal player might sacri-
fice a box so that the remaining moves enables the player to later take control of the
game.
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3. Dots and Boxes

3.4.2. The endgame phase

When there are no more save lines left to draw, one player will gain control of the
game by applying the Double Dealing strategy, which is explained in section 3.5.1. The
player who controls the game, will usually win the game, if the board is sufficiently
large and there are sufficiently many long chains.

3.5. Strategies for Dots and Boxes

For playing an optimal strategy in Dots and Boxes as a human, it can be beneficial to
understand the concepts of Double Dealing and Preemptive Sacrifices. Both strategies
are explained in Elwyn Berlekamp’s book on Dots and Boxes. [Ber00]

3.5.1. Double Dealing

With Double Dealing a player declines to capture the last few boxes of a chain to force
the opponent to open another chain. Double Dealing usually happens in the endgame
phase of Dots and Boxes when no save lines are left. A player who can capture a long
or cyclic chain is able to do Double Dealing by declining the last two or four boxes
respectively. [Ber00]

B

B

1

2

3 A

B

B

1

2

14 15

Figure 4: Move 14 and 15 from figure 1

Figure 4 shows an example of Double Dealing. The player B in move 14 captures two
boxes and is then forced to open a long chain. In move 15 the opponent A captures
only one box and then leaves two boxes for the enemy, who has no other option than
taking the two boxes and then opening the other long chain. As a result of Double
Dealing, player A is able to win the game with a score of five to four. Without applying
Double Dealing, player A would have had to open the last long chain, thus leaving it
for capture by player B who would then win the game six to three.
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A A

Figure 5: Double Dealing in cyclic chains

Figure 5 shows an example in three steps where Double Dealing is applied in a cyclic
chain of six boxes. In the beginning a simple cyclic chain with six boxes is shown.
Then the cyclic chain is opened. The last part shows two captured boxes and the
Double Dealing move which leaves four boxes to the opponent. Depending on the
overall structure of the Dots and Boxes board it can be better to not apply Double
Dealing because the opponent will score too many boxes. [Ber00]

3.5.2. Preemptive Sacrifices

During the forming phase of Dots and Boxes, the players decide what structure the
board will have – they decide how many chains of what type there will be. Arriving
at a beneficial final structure before entering the endgame phase is crucial for each
player. Usually it is especially important to influence the game so that the player can
take control of the game in the endgame phase with Double Dealing. To achieve that
goal a player might need to sacrifice a box instead of drawing a save line that does not
give away any boxes. An example for such a situation is shown in the first board of
figure 6 that is taken from Elwyn Berlekamp’s book on Dots and Boxes. [Ber00]

A

A

1 2 3

Figure 6: Problem 3 from Elwin Berlekamp’s book on Dots and Boxes [Ber00] with the
correct solution to make a preemptive sacrifice

In the first board in figure 6 the only option to win the game is opening the short chain
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with a hard hearted handout3 as seen in the second part of figure 6 and thus giving away
two boxes to the opponent. When the current player preemptively sacrifices the two
boxes, the opponent will then have to capture the two boxes and draw the last save
line (or open the single box, leading to the same result). Thanks to the sacrifice, the
initial player is then faced with a situation where the board has a short chain and a
long chain. That situation is desirable because the initial player opens the single box
for the opponent, who then has to capture it and open the long chain.

3.6. Game theoretical classification

Dots and Boxes is an impartial game. This means that moves are not specific to play-
ers – all players are allowed to make all available moves. Chess for example is not
impartial because players own pieces on the board and are not allowed to move the
opponent’s pieces.

Like Go, Dots and Boxes offers a high average branching factor. A 19 × 19 Go game
has an average branching factor of 250, while a 15 × 15 Dots and Boxes game has 240.5
as average branching factor.

On an empty board of m × n boxes there are 2 · m · n + m + n lines which can be
drawn. [Ber00, p. 8] With each move, this number is reduced by one. It follows
that the average branching factor B for a whole Dots and Boxes game with L lines is
(L + 1)/2. The following equations show how the branching factor for Dots and Boxes
was derived. Beginning with L lines, there is one less line with each move. Thus the
total number of actions that are available in a game of Dots and Boxes is ∑L

i=1 i. The
average branching factor is calculated by dividing the total number of available actions
by the number of moves L. By replacing the sum with its corresponding formula, it is
easy to further reduce the formula of the average branching factor.

B =
1
L

L

∑
i=1

i (1)

=
1
L
· L · (L + 1)

2
(2)

=
L · (L + 1)

2 · L (3)

=
L + 1

2
(4)

3The term hard hearted handout is described in Winning Ways Volume 3 [BCG03] on page 547. It simply
cuts a short chain in half so that Double Dealing is not possible. Conversely a half hearted handout is
when a short chain is opened on one of its ends, so that the opponent can apply Double Dealing by
drawing a line at the other end of the chain.
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To provide an overview of the complexity of various board sizes in Dots and Boxes,
table 1 presents the number of lines and the average branching factor for increasingly
larger quadratic Dots and Boxes boards.

Board size Lines Average branching factor

3 × 3 24 12.5
4 × 4 40 20.5
5 × 5 60 30.5
6 × 6 84 42.5
7 × 7 112 56.5
8 × 8 144 72.5
9 × 9 180 90.5
10 × 10 220 110.5
11 × 11 264 132.5
12 × 12 312 156.5
13 × 13 364 182.5
14 × 14 420 210.5
15 × 15 480 240.5

Table 1: Complexity of various quadratic Dots and Boxes boards
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4. Machine learning methods

This chapter will focus on some of the fundamental concepts that are used in AlphaGo
and AlphaZero to learn to play the game. Since the “learning” part is facilitated with
neural networks, this chapter is about the basic principles that were used to implement
neural networks. The techniques that are described here were not implemented for this
thesis because they are widely available in existing frameworks. [Cho+15; Mar+15;
Oli06]

Neural networks are organized in layers. Layers contain weights that control the net-
work’s behaviour. Weights are also-called parameters and are adapted during training
to make the network “learn” desired behaviour. In a so-called forward pass a network
receives input data, which is then passed through and processed by the network’s
layers to produce an output. When training a neural network, there is example data
that is comprised of input data and expected output data. The example input data is
fed into the neural network in a forward pass to produce output data. A loss function
evaluates the difference between the network’s output and the expected output, which
is then used to change the weights in the network’s layer to minimize the difference
(loss). Minimizing the loss is done by adapting the weights with a technique called
backpropagation where the loss is propagated backwards through the network’s layers.
[LBH15, p. 438]

4.1. Stochastic gradient descent

Stochastic gradient descent (SGD) is a method to train neural networks. It works by
repeatedly applying gradient descent to a small set of randomly selected examples.
Gradient descent is an optimization algorithm that can be used to minimize the loss
function of a neural network. Any optimization algorithm seeks to minimize a func-
tion that usually has multiple parameters. It works by partially differentiating the
loss function with respect to each weight and then using the gradients to adapt the
weights. A function’s gradient at a certain point x represents the function’s slope at
point x. When the goal is to minimize a function, its gradient provides the direction
of the nearest local minimum. As a consequence of using gradient descent, all parts
of a neural network that contribute to its output have to be differentiable, because all
parts of the neural network contribute to the result of the final loss function.

4.2. Types of neural network layers

Most neural network architectures work with layers that usually represent different
levels of abstractions. [IWK17] AlphaGo’s neural network architecture makes use of
two types of layers. Mostly, it is built with convolutional layers – only the last few
layers are fully connected. [Sil+17b] Since fully connected layers were the first type
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of layer to be widely used, they will be described prior to convolutional layers. Fully
connected neural networks date back to about 1958, when Frank Rosenblatt introduced
the first “perceptron”, which resembles the design of a neuron that is described in this
section. [WR17, p. 3, 9]

4.2.1. Fully connected neural networks

Fully connected neural networks are built with neurons that are arranged in layers.
Neurons are also-called perceptrons or units. One neuron is depicted4 in figure 7.
A neuron has a fixed number of n inputs x1 . . . xn. Each input is multiplied with its
associated weight w1 . . . wn and then summed up. The weights represent the trainable
parameters of the neuron. Optionally, a neuron can have a bias b that acts as additional
input that is fixed to the value one and also added to the sum of weighted inputs.
Finally an activation function f is applied to the sum.

x2 w2 Σ f

Activation
function

ŷ

Output

x1 w1

xn wn

Weights

Bias
b

Inputs

Figure 7: A single neuron in a fully connected layer of a neural network

The function for the output ŷ of a single neuron can be written as follows:

ŷ = f

(
b +

n

∑
i=1

xiwi

)
In practical implementations, a neural network’s forward pass is often realized with
matrix operations where multiple examples are processed batchwise. This means that
multiple examples are grouped together in a batch that is processed as a single chunk
of data. Handling data in batches often increases efficiency and also has other advan-
tages that are described in the sections about stochastic gradient descent and batch
normalization.

A layer of neurons requires a fixed number of inputs, because for each input there
needs to be a weight. As a consequence of its design, it is not possible to change

4Figure 7 is taken from http://tex.stackexchange.com/questions/132444
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the shape of a fully connected layer’s input after training, because that would add or
remove weights which are subject to training. It is possible to combine a layer of fully
connected neurons with other types of layers – for example with convolutional layers
– as long as those layers produce an output of fixed size when prepended to a fully
connected layer. The shape of the output of a fully connected layer is determined by
the number of units in the layer. For each node in a fully connected layer there is one
output. Nodes can be arranged in two or more dimensions to reflect the shape of the
processed data.

The following example illustrates how a forward pass is realized for a fully connected
layer with matrix multiplication. Assume that there are two neurons N1 and N2 in one
layer and that the input to the layer has three values. As a result, each neuron has
three weights – one for each value of the input. Then there are six weights: neuron
N1 has wN1.1, wN1.2 and wN1.3 while neuron N2 has the weights wN2.1, wN2.2 and wN2.3.
When we want to process a batch of two samples A and B, there are six values that go
into the layer – three values for each sample: A1, A2, A3, B1, B2 and B3. Furthermore
we assume that there is an activation function f and no bias. Calculating the outputs
ŷA.N1 and ŷA.N2 for sample A and ŷB.N1 and ŷB.N2 for sample B can be done with matrix
multiplication:

f

[A1 A2 A3
B1 B2 B3

] wN1.1 wN2.1
wN1.2 wN2.2
wN1.3 wN2.3


= f
([

A1 · wN1.1 + A2 · wN1.2 + A3 · wN1.3 A1 · wN2.1 + A2 · wN2.2 + A3 · wN2.3
B1 · wN1.1 + B2 · wN1.2 + B3 · wN1.3 B1 · wN2.1 + B2 · wN2.2 + B3 · wN2.3

])

=

 f
(

3
∑

i=1
Ai · wN1.i

)
f
(

3
∑

i=1
Ai · wN2.i

)
f
(

3
∑

i=1
Bi · wN1.i

)
f
(

3
∑

i=1
Bi · wN2.i

)


=

[
ŷA.N1 ŷA.N2

ŷB.N1 ŷB.N2

]

4.2.2. Convolutional neural networks

Convolutional neural networks are useful for classifying images and performing vi-
sual tasks in general. Their properties resemble some biological aspects of the visual
cortex in animals and humans, including a hierarchical organization and the ability
to preserve locality. In 1962 David Hubel and Torsten Wiesel published their research
[HW62] about the receptive field in the visual cortex of cats where they described
neural responses to different visual stimuli of movement.

Convolutional layers consist of kernels that are applied to the layer’s n-dimensional
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input. A kernel, which is also-called filter, is an n-dimensional matrix of real numbers.
In a neural network, the filters of a convolutional layer represent a form of shared
weights that are adapted during training to fit the expected output. The operation of
applying a kernel to data is called convolution. A kernel is convolved with input data
by moving the kernel across the data and applying it in every position. [LBH15]

Before the recent application in deep neural networks, the principle of convolving an
image with a kernel has been used in machine vision tasks. For example there is the
Sobel operator, which was first described in 1973 by Duda et. al. and is used for
edge-detection. The Sobel operator works by convolving two 3 × 3 kernels with an
image to extract vertical and horizontal edges. [DH73] Edge-detection with the Sobel
operator works with the following two kernels A and B:

A =

+1 0 −1
+2 0 −2
+1 0 −1

 B =

+1 +2 +1
0 0 0
−1 −2 −1


Figure 8 shows an example where a 7 × 5 image I is overlaid by a 3 × 3 kernel K
which is used to calculate the value of one pixel of the output image. Each pixel
Ij of the input image that is currently overlaid by the kernel is multiplied with the
corresponding value Ki in the kernel. By summing up the results of all multiplications,
the value of one output pixel is calculated.

∑Ij · Ki

I1 I2 I3 I4 I5 I6 I7

I8

I15

I22

I29

K1 K2 K3

K4 K5 K6

K7 K8 K9

Figure 8: Illustration of the convolutional operation

The process in figure 8 is repeated for all possible overlay positions of the kernel,
while keeping the kernel fully inside the image, resulting in a 5 × 3 output image.
The resulting output of a convolution is also-called feature map, because convolving
a kernel with an image can be interpreted as extracting a feature from the original
image. In some cases it is useful to add a padding of zeroes around the original image
so that the result has the same size as the input image. Furthermore the kernel may
be moved with a higher stride so that it moves two or more pixels at each step. Using
a higher stride creates smaller output images.

Usually, a convolutional layer in a neural network has more than one kernel and
each kernel is applied to the input data. As a result of multiple filters, a layer might
produce output data that has a larger shape than its input data. Considering for
example input data in the shape of N × M × 3 that is processed by a convolutional
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layer with ten filters: to match their input data, the ten kernels must have a size of
A× B× 3. Since there are ten filters, the convolutional layer will produce an output
shape of N ×M× 10 if it uses padding. If the layer would not use padding, the first
two dimensions of the output would be slightly smaller, depending on the size of A
and B. When a convolutional layer processes a typical RGB image, the input data is
three-dimensional. The three channels for red, green and blue form a third dimension,
leading to three-dimensional kernels in the convolutional layer that receives the image
as input.

A key aspect of convolutional neural networks is their ability to preserve local spatial
relations. Since the kernels are moved across the input data, they are sensitive to local
configurations of data. By stacking many convolutional layers on top of each other,
they are able to gradually extract more complex features – the lowest layers detect
various kinds edges, which are then used by later layers which detect shapes like for
example human eyes. This constitutes a hierarchical approach to image processing,
and has been shown to deliver good results in image classification. [KSH12]

4.3. Activation functions

Activation functions are commonly applied after each layer of a neural network. This
section describes all activation functions that are used for this thesis. There are differ-
ent types of activation functions that are useful for achieving different goals. Internal
parts of the neural networks use the ReLU function after each layer, since they have
achieved faster training time in large networks as shown in the paper about ImageNet,
which is a successful image classification network. [KSH12] For the final output of
neural networks used by AlphaDots, there are two activation functions – softmax and
tanh. Softmax produces a vector that can easily be interpreted as a probability distri-
bution while tanh yields a single value from -1 to 1 which is used to assess the chance
to win a game.

4.3.1. Rectified linear activation

The rectified linear (ReLU) activation function is defined as follows:

f (x) = max(0, x)

Figure 9 shows a plot of the ReLU activation function.
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Figure 9: The rectified linear activation function

The ReLU activation function is widely used in deep neural networks. [LBH15] It was
introduced for deep learning by Glorot et. al. in Deep sparse rectifier neural networks.
[GBB11] In the paper about ImageNet classification with deep neural networks by
Krizhevsky et. al., the ReLU activation function is credited with improving training
times and enabling larger networks. [KSH12]

4.3.2. Softmax activation

The Softmax activation function provides a discrete probability distribution that is
useful to assign probabilities to categories. Its output is a vector with k real-valued
entries that add up to 1. As a result, each entry in the vector can be interpreted as
the probability associated with the category that is represented by that entry. Given
an input vector x of k arbitrary scores, the Softmax activation function S(x) can be
defined as follows:

Sj(x) =
exp(xj)

k
∑

i=1
exp(xi)

The Softmax activation function is described by Sutton et. al. for action selection in
the context of Reinforcement Learning in chapter 2.3 in [SB+98].

4.3.3. Tanh activation

The hyperbolic tangent function takes a real-valued input and produces a real-valued
output in the range from -1 to 1. It is defined by using the exponential function as
follows:
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tanh(x) =
1− exp(−2x)
1 + exp(−2x)

−2 −1 1 2

−1

1

x

y

Figure 10: The hyperbolic tangent activation function

4.4. Regularization and normalization

When data is passed through a neural network it is subject to many transformations.
Successful approaches usually employ some kind of normalization multiple times in
a neural network – often the data is normalized after every layer in the network.
Additionally there are cases where is has proven useful to keep the parameters or
weights of a neural network close to zero if possible. This section describes one method
for normalization and one method for regularization that both affect particular aspects
of the neural network and the processed data in useful ways. One method is concerned
with ensuring that the data adheres to a certain distribution while the other method
tries to minimize the weights of the neural network. There are more notable methods
of normalization, that are not mentioned in this thesis, because they were not used by
AlphaGo or AlphaZero for Dots and Boxes.

4.4.1. Batch normalization

Actual implementations of neural networks usually process more than one sample
at once. One reason is that processing data in bigger chunks is faster, because it
reduces the overhead of reading and writing to slow storage for each sample. When a
GPU is utilized to train neural networks, the data has to be transferred to the GPU’s
memory, which is a comparably slow process. Consequently, it is advisable to load
many samples at once.
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A batch is a small set of samples – typical batch sizes are 8, 16, 32 and even bigger
multiples of two. Another reason to process data in batches is that Ioffe et. al. found
that a neural network can be trained far more efficiently when the data is normalized
batchwise. This means that after each layer, the data is normalized so that the batch’s
mean is close to 0 and the batch’s standard deviation is close to 1. To better understand
the benefit of batch normalization let us assume that a layer close to the network’s
input changes its weights. As a consequence the distribution of layer’s output changes
and forces subsequent layers to adapt to that change, thus forcing them to also update
their weights. By using batch normalization, the effect of the layer’s changed output
data distribution does not affect subsequent layers, because the output is normalized
before it is passed on to the next layer. [IS15]

4.4.2. L2 regularization

When data is processed by a neural network, it has to be stored in suitable containers
like arrays of integer or floating point values. Due to the inherent design properties of
these data containers, it is not possible to store arbitrary values. There are constraints
in terms of the minimum and maximum value and the precision a certain type can
handle. To create a well working neural network, it is important to make sure that it
is numerically stable, which means that the data processed by the network stays well
within the constraints of the employed data types.

Training artificial neural networks tries to minimize the loss function by adapting
the network’s weights. Depending on the design of the loss function, it is possible
that there are multiple optimal weight configurations from a purely mathematical
viewpoint. Since the networks are run by a computer, it is important to select a solution
that stays within the system’s constraints by adding a penalty for using large weights.
One way to define such a penalty is L2 regularization. It is defined as follows for k
weights w of a neural network:

L2 = λ
k

∑
i=1

w2
i

The L2 regularization is added to the loss function that is used by a neural network. L2
regularization works by summing up the squared weights of the network and multi-
plying it with a constant factor λ, which is set to 10−4 for AlphaDots’ neural network.
According to Schmidhuber’s overview of Deep Learning in Neural Networks [Sch15]
the general principle of trying to keep the network’s weights close to zero is also-called
weight decay amongst other terms. The paper A simple weight decay can improve gener-
alization [KH92] from 1992 describes regularization of the weights in a feed forward
neural network.
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5. Selected methods in AlphaGo, AlphaGo Zero and
AlphaZero

AlphaGo has taken the state of the art for search algorithms in games to a higher level
by beating the human champion in the game of Go, which is a major challenge for
search algorithms due to its huge search space. Despite its simple rules, Go offers a
high complexity than can not be searched exhaustively in an short amount of time
with current computing hardware. As a result, it is necessary to restrict the search to
moves that might lead to promising results. Now the challenge is to define what a
promising move looks like in any given situation. Using classical rule based heuristics
for the task is an option that is restricted to the game at hand and can obviously not
generalize to different games or problems.

AlphaGo’s solution is to use deep neural networks that iteratively learn to predict a
move’s merit and thus guide the search towards promising opportunities. AlphaGo’s
approach starts by training the neural network on data gathered from human games
and subsequently improving the network with data generated from self-play. The im-
proved version of AlphaGo, called AlphaGo Zero, purely relies on self-play reinforce-
ment learning and thus does not need human knowledge to reach superior playing
strength.

Besides deep neural networks, AlphaGo and AlphaGo Zero rely on Monte-Carlo Tree
Search (MCTS), which is a search algorithm that works by repeatedly taking samples
from the search space. In its original form, MCTS takes random samples. A sample
is taken by playing a game to the end with random moves and then returning the
score of the game as the sample’s value. When MCTS employs a heuristic that guides
the search, it can become far more powerful. The details of combining MCTS with a
heuristic function that can be provided by a neural network are covered in [Ros11] and
described in section 5.3.

5.1. The AlphaGo (Zero) algorithm

There are three tasks that are executed asynchronously in parallel:

• Training a neural network on recently generated self-play data.

• Evaluating the performance of recently trained neural networks in combination
with Monte-Carlo Tree Search.

• Generating new self-play data with the network that currently has the best eval-
uation results.

Each of these three tasks will be described in more detail in the following three sub-
sections, which provide a general overview of the concerned task and reference other

30



5. Selected methods in AlphaGo, AlphaGo Zero and AlphaZero

sections for further details. Overall, AlphaGo Zero has been trained on 4.9 million
games of self-play data.

5.1.1. Training neural networks

A neural network is continually trained on data provided either by sourcing human
games of Go or by its own self-play. AlphaGo [Sil+16] first uses human games as
examples and then proceeds to improve itself with its own data that was generated
from self-play. AlphaGo Zero [Sil+17b] abstains from using human data and solely
relies on data generated with self-play. Section 5.2 provides an in depth description
of the architecture of AlphaGo Zero’s best neural network. Besides the network that
is described in section 5.2, the authors also evaluated three different architectures that
yielded comparably inferior performance.

Using the most recent 500,000 games of self-play, the authors of AlphaGo Zero trained
the network in the Google Cloud with 64 GPU workers and 19 CPU parameter servers.
Training happend on mini-batches of 2,048 samples that were selected randomly from
the last 500,000 games. After 1,000 training steps they produced a checkpoint of the
neural network to be evaluated as described in the following subsection. To optimize
the weights of the neural network, the authors used stochastic gradient descend with
momentum and learning rate annealing. They also used L2-regularization to mini-
mize the weights’ values. [Sil+17b] Section 4.1 provides details on stochastic gradient
descend and section 4.4.2 explains L2-regularization.

5.1.2. Evaluating neural network performance

Each neural network that was saved during a checkpoint in training was evaluated
against the currently best neural network in self-play using Monte-Carlo Tree Search.
An evaluation consists of 400 games where the τ parameter in the move selection of
Monte-Carlo Tree Search is set to zero, so that it selects the best move available. Section
5.3 describes AlphaGo Zero’s variant of Monte-Carlo Tree Search and also details the
effect of the τ parameter. A contending network needs to win against the best network
by a margin of 55 % to become the new best network.

5.1.3. Generating self-play data

New data is generated by using Monte-Carlo Tree Search (MCTS) with the best cur-
rently available network as determined by the latest evaluation. Both players use the
same neural network with MCTS to determine their moves. Each run of MCTS is ex-
ecuted for 1,600 iterations, which takes 0.4 seconds per run. According to the paper
about AlphaGo Zero [Sil+17b] 4.9 million games of self-play were generated.
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5.2. Neural network architecture

AlphaGo Zero uses a network that is made of a residual tower that is connected to
two outputs: the policy head that suggests moves and the value head that assesses
the chance to win the game. The concept of a residual network is introduced in Deep
residual learning for image recognition by He et. al. in [He+16]. Its main feature is a
“skip” or “shortcut” connection that bypasses a few layers and adds the original input
to the output of the skipped layers. This principle is usually repeated multiple times
and allows for deeper networks, because the skip connections allow for easier training
of deep networks. [He+16]

The input of AlphaGo Zero’s neural network is made of 17 planes (images) of 19 × 19

pixels. Each 19 × 19 plane shows one binary feature of the 19 × 19 Go board. One
pixel in an image plane represents one intersection on the Go board. For each player
there is a plane that indicates if a stone of the player’s color is present at the pixel’s
location. In addition to the two planes that represent the current state of the board,
there are 14 more planes that provide a history for the previous 7 time steps of the
game, totaling 16 planes that represent the last 8 states of the Go board. The final
plane represents the current player: it is one in all positions if black is to play and zero
in all positions if it is white’s turn.

Figure 11 shows a visualization of AlphaGo Zero’s network. First, the input planes are
fed into a convolutional layer with 256 kernels of size 3 × 3 with stride 1. Section 4.2.2
goes into detail about convolutional layers, their properties and parameters. After the
data passed a rectified linear (ReLU) activation (see section 4.3.1 for an explanation)
and batch normalization (see section 4.4.1), it enters the first Res Block. A Res Block
is short for residual block, which is part of a residual network that was initially de-
scribed. There are two versions of the AlphaGo Zero network: one uses 19 residual
blocks, the other uses 39 blocks.

Inside a Res Block the data takes two routes. One route passes the data through
a first convolutional layer with 256 3 × 3 feature maps, batch normalization, ReLU
activation, then through a second convolutional layer with the same configuration and
finally another batch normalization. The other route passes the data directly to the
output of the first route where both routes are merged before entering a final ReLU
activation that concludes the residual block and constitutes its output.

After the data was processed by all residual blocks, it is split up to be passed to two
output “heads” that complete the neural network. One output of the network is called
the policy head, because it assigns recommendations to all possible actions. The other
output is the value head and provides an approximation of the chance to win or lose
the game.

The policy output first passes the data through a convolutional layer with two 1 × 1

kernels, thus reducing the data to two “images”. After passing a batch normalization
and a ReLU activation, the two images reach a final fully connected layer with 362
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units. Consequently the policy output produces a vector with 362 entries that repre-
sents all possible moves: 19 · 19 = 361 intersections on the Go board plus the option to
make a pass move. See section 4.2.1 for an explanation of fully connected layers.

The value output reduces the incoming data to a single image with a convolutional
layer that has one 1 × 1 kernel. After passing a batch normalization and a ReLU acti-
vation, the image enters a fully connected layer with 256 units and is then processed
by a ReLU activation function. The resulting vector with 256 entries is handed over
to another fully connected layer with just one unit, creating a single output value.
Finally the output value is limited to the range from -1 to 1 by a tanh activation func-
tion, which concludes the value head. Section 4.3.3 provides details on tanh activation
functions.

C

B

C

C: 3x3 Convolution, 256 filters
C2: 1x1 Convolution, 2 filters

Batch Normalization

Policy

R ReLU activation

+ Combination (Add)

19 x 19 x 17

Input C C +

Res Block - Repeated M times

F Fully Connected Layer
F1: 362 units, F2: 256 units, F3: 1 unit

S tanh activation

Value

C2

R R RB B B

B R

C2

F1

B R F2 R F3 S

Figure 11: AlphaGo Zero’s neural network architecture according to [Sil+17b]

Besides the described network, Silver et. al. evaluated three other network architec-
tures that will only be described briefly here:

dual–res This is the network that was described in detail. Two outputs are connected
to one “tower” of residual blocks.

sep–res Instead of using one tower of residual blocks, this variant has two towers –
one for each output. As a result there are two independent networks instead of
one with two outputs.

dual–conv This network does not use residual blocks. It is instead made of 12 convo-
lutional layers that end with two outputs.

sep–conv This variant is made of two independent networks that are made of 12

convolutional layers each to provide the policy and value output.

According to the evaluation in [Sil+17b] the dual–res variant performs best.
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5.3. Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) works by repeatedly evaluating different outcomes
of the game. Starting from a given position to analyze with MCTS, the algorithm
proceeds through three stages where a tree structure – called Monte-Carlo tree in this
thesis – is built and updated. Beginning with an empty Monte-Carlo tree, MCTS
iteratively expands it and updates nodes. Each node represents one state s of the
game’s board. A node in AlphaGo Zero [Sil+17b] contains the following information,
where a ∈ A(s) is one action of all legal actions A in state s:

N(s, a) stores the visit count. Every time a node is traversed, its visit count is incre-
mented by one.

W(s, a) represents the total action value that is the sum of all scores that were backed
up through the node.

Q(s, a) saves the mean action value which is the result of dividing the node’s total
action value by its visit count:

Q(s, a) =
W(s, a)
N(s, a)

P(s, a) is the prior probability of selecting the move a in state s assigned by the neural
network.

Starting from an initial state s0, AlphaGo Zero MCTS iterates the following three steps
1,600 times. Figure 12 shows a visualization of the three stages.

Selection The existing Monte-Carlo tree is traversed until a leaf node is reached, which
is then returned as the result of the selection. The path through the tree is
determined by a combination of an action value Q(s, a) and the result of the
PUCT algorithm U(s, a) that takes the prior probability P(s, a) into account. For
each layer t in the Monte-Carlo tree, a move at is selected which facilitates the
transition from the state st to the next state st+1. An action at is selected using
the following method:

at = argmax
a

(Q(st, a) + U(st, a))

where U(st, a) is defined as follows:

U(s, a) = CPUCT · P(s, a) ·
√

∑b N(s, b)
1 + N(s, a)

With U(s, a) the search makes use of the PUCT algorithm [Ros11] that balances
exploration of new moves and exploitation of strong moves. The balance is
determined by the constant hyperparameter CPUCT. Using the prior probability
P(s, a) assigned by the neural network, the search is guided towards promising
new moves.
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Expansion and Evaluation The state of the leaf node s of the Monte-Carlo tree is sent
to the neural network or evaluated directly if it is a terminal state. After the
network processed the given state, a child node is created for each valid move
a. All child nodes are initialized as follows: the visit count N(s, a) and mean
action value Q(s, a) are set to zero while the prior probability P(s, a) receives the
network’s estimated probability of making move a. Finally the total action value
is populated with the network’s assessment of the chance to win the game.

Backup During the last phase, the total action value is backed up through the Monte-
Carlo tree along the path that was taken in the selection step. Each node on the
traversed path receives the following updates:

• N(s, a) is incremented by one.

• W(s, a) is incremented by the leaf node’s action value.

• Q(s, a) is updated according to the previously described formula.

Selection

Recursively select
node with

maximum Q + U
value

Expansion, Evaluation

Evaluate state in
leaf node with

neural network,
then add children

Backup

Update action
values and

increment visit
counts

Repeat 1,600 times

Figure 12: Simplified visualization of AlphaGo Zero Monte-Carlo Tree Search as de-
scribed in [Sil+17b]

After the three steps were executed 1,600 times, a move to play is selected and re-
turned as the result of the algorithm. The decision is based on the visit count of the
root node’s children. To select a move, AlphaGo Zero first defines the policy π for a
given initial state s0 as follows while using a temperature parameter τ that controls
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exploration:

π(a|s0) =
N(s0, a)

1
τ

∑b∈A N(s0, b)
1
τ

Finally a move a ∈ A is selected randomly from all valid moves A according to the
distribution defined by π.

Due to the definition of π, the output of the policy head is normalized so that the sum
of π for all actions in s0 is one. Normalization is facilitated by dividing each action
value N(s0, a) by the sum of all action values for s0. Using τ, the level of exploration
can be controlled by increasing or decreasing the difference between the values for
all actions. Since the selection of a final move happens according to the probability
distribution defined by π, the use of τ controls exploration versus exploitation by
equalizing or amplifying the difference between probabilities. If τ is lower than one,
the value of N(s0, a) is exponentiated with a value that is bigger than one and thus
the difference between the values for different actions is increased, which results in
less exploration: Moves with a high initial value will be raised far higher than moves
with lower initial values. This effect is amplified with increasingly lower values for τ.
Conversely the values for various moves are moved closer together when τ is bigger
than one, because then N(s0, a) is exponentiated wit a value lower than one.
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6. Applying AlphaGo Zero’s methods to Dots and Boxes

This section will describe the methods employed to realize an opponent in Dots and
Boxes that is based on Monte-Carlo Tree Search and deep neural networks. First there
is a description of the neural networks and how they are integrated into KSquares,
which is an application for playing Dots and Boxes. Afterwards section 6.5 will pro-
vide insight into the Monte-Carlo Tree Search algorithm for Dots and Boxes. Finally
section 6.6 explains the Self-Play reinforcement learning methods that tie together
neural networks and tree search to create a powerful opponent that is able to improve
itself. In reference to AlphaGo, this incarnation of the AlphaZero algorithm for Dots
and Boxes is called AlphaDots.

6.1. Using neural networks to play Dots and Boxes

Initially, KSquares was extended by two facilities to have a neural network play Dots
and Boxes:

• Means to generate training data for a neural network.

• An interface to connect a network’s input and output with KSquares so that the
network can play Dots and Boxes against human players and other AIs.

For the means to generate training data, section 6.2 describes the various types of
data generators that were implemented in KSquares for this thesis. Common to all
data generators is the ability to create input and output data for neural networks in
a suitable format. Since all networks for this thesis are built with Python in Tensor-
flow [Mar+15] and Keras [Cho+15] the data generators put data into .npz files, which
are the native format of the underlying library NumPy [Oli06] that is used by Tensor-
flow and Keras.

To play Dots and Boxes against a neural network, KSquares provides AI ConvNet,
which handles sending data to and receiving data from various types of neural net-
works. Depending on the type of neural network, the game’s state is converted ac-
cordingly and sent to the network. The network’s output assigns a value to each line
and is further interpreted as follows:

• Only lines that are not yet drawn are considered. If the neural network assign
the highest value to a line that has already been drawn, the interface in KSquares
will ignore this and select the valid line with the highest assigned value.

• If multiple lines share the same highest value, the interface will randomly select
one of them.

• If the network provides an invalid value like NaN, which means "’not a num-
ber"‘, KSquares will intentionally crash. Explicitly crashing KSquares on NaN is
done to offensively indicate problems with the network.
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The AI ConvNet in KSquares allows the user to dynamically select the model (neural
network) to play against.

6.2. Training data

There are different types of training data that will be described in the following sec-
tions. Each of the following sections is named after the associated data generators’
names. Different data generators often share the same basic format for input and out-
put data. Therefore the sections are named after all data generators that provide the
described format.

In some cases, the data was further transformed with Python’s NumPy library before
being fed into a neural network. Such transformations will be described in section 6.3
and are mentioned in section 6.4 which is about the neural networks’ architectures,
because the transformations are specific to the networks.

6.2.1. FirstTry, StageOne, StageTwo

In this representation both the input Dots and Boxes board and the expected output
of the neural network are images. Both input and output image share the same size
which depends on the number of boxes in the original board. The output image is
always made of exactly one white pixel denoting the line that KSquares’ Hard AI
would choose in the given situation.

A

B

Figure 13: Original board Figure 14: Input image Figure 15: Output image

Figure 13 shows a Dots and Boxes board in the usual format that is used throughout
this thesis, while figure 14 shows the same board as an image that is used as input
for neural networks. The board shows a long chain, a cyclic chain and a short chain
that was opened with a hard hearted handout. A dashed line in Figure 13 indicates
the expected line from Figure 15. The images depicted in Figure 14 and Figure 15 are
scaled up so that pixels are easily visible. In the input and output images, all elements
like dots, lines and boxes are reduced to single pixels. Lines are white, dots and boxes
are shades of gray and the background is drawn in black.
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The board state that is used as the basis for the input image is generated as follows:
A game is played by the fast, rule based Hard AI up to a random point. Then the
board’s state is converted to the input image. Afterwards the position of the next
move of KSquares’ Hard AI is marked on an otherwise empty output image.

6.2.2. BasicStrategy

During the first phase of Dots and Boxes, KSquares’ Hard AI often selects a line ran-
domly from a rather large pool of possible lines that do not give away boxes to the
opponent. To provide the neural network with all possible options at the same time,
the BasicStrategy data generator creates output images where all acceptable lines are
shown.

Figure 16: Input image Figure 17: Output image

Figure 16 shows an input image generated by the BasicStrategy data generator. Its
format does not differ from the format described in section 6.2.1. Figure 17 shows the
corresponding output image where many valid lines are shown as white pixels.

6.2.3. Sequence, TrainingSequence

The Sequence data generator creates data that shows a full Dots and Boxes game as
a sequence of images like those in Figure 14. Both input and output data are in the
format of Figure 14, which includes all elements like boxes and dots in the output
image. Consequently, neural networks are trained to also output irrelevant parts of
the game. Conversely, the TrainingSequence generator produces output sequences like
the BasicStrategy generator.
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6.2.4. StageThree

Introducing the value output, the StageThree data generator provides three groups of
data:

Input The input data is unchanged compared to previous data generators. Figure 14

shows an example image.

Policy The policy output data is a vector of all possible lines where all entries are 0,
except for the line selected by KSquares’ Hard Ai, which is set to 1. All lines are
indexed left to right, top to bottom.

Value The value output is a single real value in the range from -1 to 1. It is meant to
reflect the chance to win the game where -1 is a certain loss and 1 an assured
win.

Like in previous data generators, a game of Dots and Boxes is played up to a random
point by KSquares’ Hard AI to generate an input image and the policy output. To
calculate the value output, the game is played to its end by the rule based Hard AI.
Then the number of captured boxes by player A is subtracted from the number of
captured boxes by player B. Here player A is the player to make a move on the gener-
ated input image. The difference of captured boxes is then divided by four fifth of the
overall number of boxes. Formally the value V is calculated by subtracting the boxes
of player A from the boxes of player B and dividing the result by 0.8 of the number of
all boxes G.

V =
A− B
0.8 · G

The motive behind using 80 % of all boxes as divisor instead of the full number is that,
due to Double Dealing in Dots and Boxes, a weak opponent will still score a few boxes.
Thus even optimal play probably will not capture all boxes. Since V should reflect the
chance to win the game, the difference between captured boxes was amplified.

6.2.5. StageFour

StageFour is an improved version of the StageThree data generator. Like its predecessor,
it creates data for one input and two outputs. Calculating the number of moves before
an input image is generated has been simplified: The StageFour uses a parameterized
Gaussian distribution to determine the number of moves left to play in an input state.
Figure 18 shows a histogram of 1,000,000 samples of moves left for a 3 × 3 board with
default parameters.

40



6. Applying AlphaGo Zero’s methods to Dots and Boxes

Figure 18: Histogram of moves left for 1,000,000 samples

There are two hyperparameters that control the distribution of moves left in the Stage-
Four data generator. Both parameters act as scaling values for the number of lines. The
parameters σ and µ influence the Gaussian distribution G(s). Adapting σ will change
the deviation from the mean of the distribution. The mean of the distribution can be
influenced by µ. By default σ is set to 0.125 and µ is set to 0.5 so that most samples
are in the middle of the game. The total number of lines is denoted as L and depends
on the configured board size for the data generator.

moves left = G(σL) + µL

Figure 19 shows a histogram for 1,000,000 samples where σ = 0.2 and µ = 0.6 to move
the focus of the data generator towards an earlier phase of the game and distribute the
generated samples more evenly over the whole game.

Figure 19: Histogram of moves left for 1,000,000 samples with σ set to 0.2 and µ set to
0.6

The StageFour data generator is used in a simplified self-play reinforcement learning
loop. It generates a game with the Hard AI, until there is a given number of moves
left. Then it can be configured to either use the Hard AI or the AlphaZero MCTS AI
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to generate the policy output. If the policy output was generated with the Hard AI,
the game is played to completion to calculate the value V as follows:

V =
A− B

G

Otherwise the value V is taken from the selected child node’s value in the Monte-Carlo
tree.

When the StageFour data generator uses the AlphaZero MCTS AI, it is hypothesized
to create improved training data that contains stronger moves than the data that Al-
phaZero’s network was originally trained on. Using this improved data to train Alp-
haZero’s network should make it possible to create a self-play reinforcement learning
loop with a minimized amount of necessary computing power.

6.3. Data transformations

After the data is generated with KSquares’ data generators, it is transformed in some
cases. Usually the image data is normalized so that a black pixel corresponds to 0 and
a white pixel corresponds to 1. Besides simple normalization, data was transformed
in two ways:

• Input images were split up into multiple planes as described in the paper about
AlphaZero. [Sil+17a]

• Some neural networks generate a vector of all possible lines instead of full im-
ages.

The following subsections will describe both transformations in detail.

6.3.1. Input transformation

According to the description of AlphaGo and AlphaZero, the input data for neural
networks was provided in multiple planes where each plane contained only one fea-
ture of the game. For chess, Silver et. al. used six planes per player for the six types of
pieces in chess: king, queen, rooks, bishops, knights and pawns as described in table
S1 in [Sil+16]. In the previously described images of Dots and Boxes boards there are
five different elements:

1. Background

2. Lines

3. Boxes captured by player A

4. Boxes captured by player B

5. Dots
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For this reason, an input image is split up into five planes. An example is shown
in figure 20 where the five planes are shown below the original input image. In
each plane a pixel is either black or white. All pixels are black except those pixels
at positions where the element is present in the original image.

Figure 20: Dots and Boxes board image and the five planes generated from that image

6.3.2. Output transformation

Early attempts at designing neural networks required the network to generate output
data as full sized images where the network had to provide predictions for pixels that
were simply ignored by KSquares. Newer networks were designed to only predict
values for the lines to reduce the overhead of predicting pixel values that are subse-
quently ignored. In the reduced version, the output is a vector where each element
represents one line.

To facilitate the output as a vector of lines, a custom layer called LineFilterLayer
was created that extracts all line pixels from a typical output image (like in figure 15)
and puts them in a vector. The custom Keras layer uses Tensorflow’s BooleanMask
function.

6.3.3. Data augmentation

Since it takes a comparably long time to generate samples with Monte-Carlo Tree
Search, an AugmentationSequence class was developed which augments given data in
a suitable format for the fit_generator method in Keras. Augmenting data works by
randomly applying one of the following mutations:

• Leave the data unchanged.

• Flip the data horizontally.

• Flip the data vertically.

• Flip the data horizontally, then vertically.
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By using data augmentation, the amount of available training data is increased.

6.4. Network architectures

This section describes the various network architectures that were implemented to play
Dots and Boxes. The first attempts are rather simple networks with poor performance
and are not based on the architecture of AlphaGo or AlphaZero.

All models are fully convolutional – they are able to handle input images of arbitrary
size. Consequently they are able to play Dots and Boxes on any given board size.

6.4.1. First Try, Stage One, Basic Strategy

This model is a 7 layer convolutional neural network. Each convolutional layer consists
of 64 filters with 3 x 3 kernels. After the activation of each convolutional layer, batch
normalization is applied to the data. The first six layers use the ReLU activation
function while the last layer uses softmax. The softmax activation function works on
each pixel individually, by treating each pixel as a boolean classification task. Figure
21 visualizes the model’s previously described architecture.

5x5 Convolution, 64 filters

Batch Normalization

W x H x 1

Input image
W x H x 1

Output image

ReLU activation

Softmax activation

Figure 21: Network architecture of the First Try, Stage One and Basic Strategy models

The model was trained with stochastic gradient descend using a categorical crossen-
tropy loss function. Training occurred for 50 epochs on a small dataset of 10,000

examples generated with the FirstTry data generator.

The input for the model is a grayscale image of the game’s state. The image data is
normalized so that black corresponds to 0 and white to 1.

There are two Stage One neural networks. The first one has the same architecture as
the First Try model from the previous section, while the second version differs in one
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aspect: it has 5 × 5 instead of 3 × 3 kernels. As the name suggests, both networks
were trained on data generated by the StageOne data generator.

Besides the First Try and Stage One networks there is another network that shares the
same architecture: Basic Strategy. Here the training was executed on data from the
BasicStrategy data generator.

6.4.2. LSTM

The LSTM network architecture is built with Keras’ ConvLSTM2D layer [Shi+15] which
combines Long Short Term Memory (LSTM) units with convolutional input transfor-
mations and convolutional recurrent transformations. This architecture is based on an
example provided by Keras for predicting the movement of boxes in a short image
sequence.

Data is fed into the network as a sequence of length L that starts with an empty board
and leads up to the state of the game where the network should make a move. The
network’s output is the predicted next image for the provided sequence.

3x3 LSTM 2D Convolution, 40 filters

Batch Normalization

W x H x L
Input Sequence

W x H x 1

Output image

Sigmoid activation

3x3x3 Convolution, 1 filter

Figure 22: Network architecture of the LSTM model

Figure 22 shows a visualization of the LSTM model. The input sequence has a dimen-
sionality of W × H × L where W represents the board’s image width, H the height
and L is the number of images in the sequence. Each image in the input sequence
shows one more line than the previous one. Processing of the sequence happens in
four layers made of batch normalized ConvLSTM2D units with 40 filters and a final
three-dimensional 3 × 3 × 3 convolutional layer that produces an output image with
a sigmoid activation function.
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6.4.3. AlphaZero network architecture for Dots and Boxes

Heavily inspired by the AlphaGo Zero template described in the methods section of
[Sil+17b], this model architecture is made of convolutional layers that are arranged in
residual blocks which have an extra shortcut connection that skips layers. In contrast
to the original architecture, this incarnation is made fully convolutional by replacing
the final dense layers with custom ones that support arbitrary input sizes. Thus it is
possible to play Dots and Boxes on different board sizes with the same network.

Data is provided in five input planes where each plane represents one element of the
original input image. See figure 20 for an example of an input image that is split into
five planes. After being passed through one convolutional layer with N filters, ReLU
activation and batch normalization, the data enters the first “Res Block”. Res Block is
a short form of residual block and it is proposed in [He+16]. In a Res Block the data
takes two ways: It is processed and a copy of it takes a shortcut.

Processing Data is passed through a convolutional layer with N filters, batch nor-
malization, ReLU activation, a second convolutional layer with N filters and a
second batch normalization before it enters a combination layer that reconciles
both paths.

Shortcut Data is passed directly to the combination layer and thus takes a shortcut
through the Res Block.

The combination layer adds up both input and processed data and puts the result
through a ReLU activation. This process is repeated M times until finally the data
reaches the end of the Res Blocks where it is again split up for the two outputs of the
network: the value head and the policy head.

Value Incoming data is reduced to a single plane by a convolutional layer with one
filter. Afterwards the custom value layer5 reduces the image to a single value
by behaving like a classical dense layer with one neuron without bias where all
weights are set to 1

number of pixels . The resulting value is passed to a tanh activation
function so that the value output is between -1 and 1.

Policy Incoming data is reduced to a single plane by a convolutional layer with one
filter. Then the resulting image is fed into the custom made line filter layer, which
extracts the lines’ pixel from the image and puts them into a vector. Finally the
vector is passed to a softmax activation function. Due to the softmax function,
the sum of all policy vector entries is 1 and the vector can be interpreted as a
probability distribution.

Figure 23 provides a visualization of the preceding description of the network’s archi-
tecture.

5A simpler alternative to the custom layer would have been Keras’ GlobalAveragePooling2D layer.
Unfortunately the layer was overlooked until the thesis was almost done.
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Figure 23: Network architecture of the AlphaZero model

Depending on the instance, the values for N are 64, 128 or 256 while M is either 4, 8

or 16. In the chapter about evaluation the values for N and M are explicitly stated for
each model.

6.5. Monte-Carlo Tree Search

In AlphaDots, the Monte-Carlo Tree Search algorithm is based on the description in
the paper about AlphaGo Zero [Sil+17b], which is also described in section 5.3. Similar
aspects include the information stored for the nodes in the Monte-Carlo tree:

N(s, a) is the visit count for move a in state s.

W(s, a) is the total action value for move a in state s.

Q(s, a) is the mean action value, calculated by W(s,a)
N(s,a) .

P(s, a) is the prior probability to make move a in state s as assigned by a neural
network.

Further similarities include the three steps Selection, Evaluation & Expansion and
Backup which are described in section 5.3.

There are a few points where the implementation of AlphaDots diverges from its
paragon:

• AlphaDots has two methods for the final move selection.
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• AlphaDots has the option to aggregate moves so that a node in the Monte-Carlo
tree may represent multiple moves that belong together.

6.5.1. Final move selection

AlphaDots supports two methods to select the final move that is returned by the
algorithm. The first method is based on AlphaGo’s method of defining a policy π with
a temperature parameter τ and then using π as a probability distribution to randomly
select a move. A detailed description of this approach can be found in section 5.3
about AlphaGo’s final move selection method. Additionally AlphaDots has a method
that simply maximizes the expected output:

argmax
a∈A

N(s0, a)
∑b∈A N(s0, b)

where a is an element of all valid actions A in the state s0 that is the input to the MCTS
algorithm.

Due to the softmax activation function in the AlphaZero network architecture for Dots
and Boxes (see section 6.4.3) the sum of the network’s policy output is already nor-
malized to 1. This is in contrast to the original AlphaGo Zero network architecture,
that does not have a softmax activation function and solely uses the definition of π for
normalization of the output. Despite the softmax feature of providing a vector that
sums up to one, it is necessary to normalize in the move selection function, because
the interface in KSquares discards all invalid lines. As a consequence, only a subset of
all lines is considered when selecting a move, which can lead to ∑b∈A N(s0, b) being
smaller than one, if the network assigned an invalid move with a value bigger than
zero.

6.5.2. Move aggregation

AlphaDots supports two modes for searching moves with Monte-Carlo Tree Search.
The first mode does not use any knowledge of the game and thus treats each undrawn
line as a possible option to be considered by the search algorithm.

Building on previous work on Dots and Boxes, a second mode uses move sequences
as they were generated for the Alpha-Beta search algorithm for the related bachelor’s
thesis. [Pet15] These move sequences reduce the search space by leaving out some
options that are guaranteed to not contribute to any optimal strategy and those that
are equivalent to other moves. Excluding certain moves is based on the work by
Barker et. al. who solved 5 × 4 Dots and Boxes. [BK12] Move sequences for example
only include one line for each corner of the field since drawing either of both sides of a
corner would result in equivalent board states.Besides providing one representative for
equivalent corner moves, the sequences only include moves that fully capture a chain
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or end with Double Dealing, leaving out all move sequences where capturing a chain
is interrupted half way through. [Pet15] Using move sequences provides the algorithm
with rather powerful knowledge of the game. As a consequence it is possible to easily
disable the usage of move sequences with a command line and GUI option so that
experiments with the raw abilities of the search algorithm can be conducted.

6.5.3. Performance

Executing Monte-Carlo Tree Search with an Nvidia GTX 970M GPU for 1,600 itera-
tions on a 4 × 4 board takes about 40 seconds. In contrast the execution of AlphaGo
Zero’s Monte-Carlo Tree Search takes 0.4 seconds. [Sil+17b] Besides more powerful
hardware, AlphaGo Zero most probably benefits from a more efficient implementa-
tion than AlphaDots.

6.6. Self-Play reinforcement learning

AlphaDots is completed by the ability to use self-play to surpass its previous level
of skill. Self-play ties together the two central aspects of the AlphaDots implementa-
tion:

• Training a neural network that is then able to approximately reach the playing
strength presented in the training data.

• A MCTS algorithm that is able to leverage the knowledge of a neural network
to find even better moves by executing a well informed, directed sampling of
possible moves.

The self-play functionality of AlphaDots supports two modes of operation. First, it
generates training data with the currently best neural network. Afterwards it trains
the best neural network on the newly generated data. Depending on the mode of
operation, AlphaDots does one of two things:

1. Assume that the newly trained network is better than the previous one and
simply use it as the new best network.

2. Evaluate the newly trained network and only use it if it won more than 50 % of
all games.

All three parts of AlphaDots self-play functionality support a wide range of options
that govern different aspects of their operation.
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Generate Train Evaluate

skip evaluation

Figure 24: Flow of self-play reinforcement learning in AlphaDots

6.6.1. Generating data

In an attempt to require less computational resources, the self-play reinforcement
learning method of AlphaDots deviates from the methods used by AlphaGo Zero.
Instead of playing full games with Monte-Carlo Tree Search and sampling from them,
AlphaDots generates a board state with the Hard AI and then uses a single pass of
Monte-Carlo Tree Search with 1,500 iterations to produce the expected output. Al-
phaDots also provides an option to set a custom number of MCTS iterations to allow
for fewer iterations in experiments, thus further reducing computational costs.

Section 6.2.5 provides a detailed description on how the data is generated. Besides
the default behavior of generating data with MCTS, AlphaDots also supports all other
integrated AIs when it generates data with a dedicated command line option. As a
result, the self-play mode can be used to train a neural network as described in section
6.4.3 on various types of data.

6.6.2. Training new networks

To improve the currently “best” neural network, it is trained on the data that was
generated in the first phase of self-play. AlphaDots supports two modes of training a
neural network. First, there is the classical method of training directly on the provided
data. Since it takes a long time to generate new data with MCTS, AlphaDots also has
the ability to increase the number of samples by augmenting the given data. Data
augmentation in AlphaDots is described in detail in section 6.3.3.

Besides either training with or without data augmentation, AlphaDots offers a cumu-
lative training mode if the evaluation phase is enabled. By default AlphaDots discards
a network that was not able to beat the best network in at least 50 % of the games.
When it uses cumulative training, the failed network is not discarded but instead used
as the starting point for training in the next iteration. As a result the knowledge that
is contained in the generated training data iteratively accumulates in the contending
network, even if it does not win against the best network immediately.
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6.6.3. Evaluating new networks

Further diverging from the original methods in AlphaGo Zero, this implementation
does not enforce a model evaluation but also supports the option to repeatedly gen-
erate data and train the network on it, without evaluating the playing strength of the
new network after training.

During evaluation, instead of playing full games to evaluate the playing strength,
AlphaDots initializes the boards with a few random moves to reduce the number of
moves that have to be computed. The number of initial random moves is set so low
that the game is in the middle of the forming phase, which is explained in section
3.4.1. It is also possible to disable the random board initialization. Nevertheless in
some cases it is not advisable to disable this functionality, because empirical results
have shown that AlphaDots makes mostly deterministic moves, which results in an
evaluation where it almost always plays the same game against itself.
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7. Evaluation

This section describes the efforts to evaluate the playing strength of various AIs for
Dots and Boxes. The first part covers notable AIs for Dots and Boxes as it details the
general methods of those AIs. Two ensuing sections present methods and results of
evaluations that were conducted for this thesis.

7.1. Existing AIs for Dots and Boxes

This section describes some notable AIs for Dots and Boxes. Many of the AIs that are
listed here are integrated into KSquares to allow for easy evaluation of their playing
strength in comparison to other AIs.

7.1.1. KSquares – Easy, Medium, Hard

There are three rule based AIs in KSquares that mimic typical novice human strategies.
All three AIs are very fast and rely on hand crafted rules to play the game. The AIs
have been available in KSquares before the beginning of the related bachelor’s thesis.
[Pet15]

Easy During the forming phase, this AI randomly draws lines that do not give away
boxes. In the endgame phase it opens chains randomly.

Medium The Medium AI behaves like the Easy AI but during the endgame it opens
chains ordered by length to give away fewer boxes.

Hard Besides the skills of the Medium AI, it is able to do Double Dealing. Furthermore
it exclusively opens short chains with a hard hearted handout to avoid that the
opponent can apply Double Dealing in those chains.

Table 2 shows the evaluation result of the Easy, Medium and Hard AIs playing against
the Easy, Medium and Hard AIs. Each combination played 10,000 matches where
5,000 games started with one AI and 5,000 games started with the other one.

Wins vs. Easy Wins vs. Medium Wins vs. Hard

Easy 50.36 % 9.43 % 2.64 %
Medium 90.82 % 49.72 % 8.93 %
Hard 97.71 % 91.11 % 49.50 %

Table 2: Results of Easy, Medium and Hard AIs playing against each other

The results show that when one of the AIs plays against itself, it wins about half of
the time. Furthermore it becomes clear that each AI deserves its name in terms of
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playing strength – Medium beats the Easy in 90 % of the games while it loses against
the Hard AI which beats its subordinate counterparts in most cases. The results can
be reproduced in mere minutes by running the Docker Image mentioned in section 7.3
with the parameter EasyMediumHard.

7.1.2. KSquares – Alpha Beta

The Alpha Beta AI (αβ)was the main research topic for the related bachelor’s thesis. It
is based on the minimax search algorithm and was enhanced with alpha-beta pruning,
move ordering, transposition tables and move sequences that reduce the search space.
One central feature of the search algorithm was the ability to order moves in a way
that supports the alpha-beta pruning mechanism, which relies on a move ordering that
places potentially strong moves first. The code to generate all possible move sequences
has been reused in the implementation of the Monte-Carlo Tree Search algorithm for
this thesis. Besides move ordering, the Alpha Beta AI makes use of transposition tables
which enable the algorithm to efficiently reuse earlier search results. If the algorithm
does not explore at least 10 % of the available lines in the root board configuration,
it uses a flat heuristic search to select a move to prevent early preemptive sacrifices
during the forming phase. [Pet15]

7.1.3. KSquares – ConvNet

The ConvNet AI in KSquares was written for this thesis. It allows the user to directly
play against a configurable neural network. To avoid many invalid moves, this AI
provides an slightly fault tolerant interface for the neural networks: it converts the
given board to an image like the one shown in figure 14 and sends it to the network.
After receiving the network’s answer it handles the data as follows:

• Only valid lines are considered. If the network assigns values greater than zero
to invalid lines, they are ignored.

• The line with the highest assigned value is selected. If two or more lines share
the maximum value, a line is selected at random.

• If the network provides an invalid value like NaN, it will throw an exception.

7.1.4. KSquares – AlphaZero

The AlphaZero AI in KSquares was written for this thesis. Section 6.5 provides an in
depth description of the methods used in this AI. KSquares’ user interface provides
means to adapt all hyperparameters of this AI and to select the neural network that is
used to support the search.
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7.1.5. Dabble

Dabble was written by J. P. Grossman in 2000. It works with an highly optimized
implementation of minimax search that is enhanced with alpha-beta pruning and
many other features. Internally it relies on the Strings and Coins board representation.
[Gro00] Dabble was integrated into KSquares for the related Bachelor’s thesis.

7.1.6. QDab

QDab was created by Yimeng Zhuang in 2014 and is built with Monte-Carlo Tree
Search and a feed forward neural network. It exclusively plays on boards with 5 ×
5 boxes and is the strongest AI for Dots and Boxes according to [Pet15]. QDab uses
a feed forward artificial neural network with one input layer, one hidden layer and a
one unit output layer. The neural network provides a real-valued assessment of the
provided board from the perspective of the current player where -1 represents a certain
loss of the game, while an output value of 1 predicts a sure win. Unlike AlphaZero,
QDab uses the neural network exclusively for the simulation step of the Monte-Carlo
Tree Search – the neural network is used to predict the winner of the game instead
of playing it to its end with random moves. The network’s input layer has 25 units
which receive certain features that are extracted from the actual board configuration.
Those features are the number of chains on the board, the number of loop chains
and the number of nodes with certain valences when viewed in the Strings and Coins
representation. A central part of QDab is a new board representation which groups
the chains on a Dots and Boxes board in 12 different categories, which are used as
the input features of its neural network. Using minimax search, training data for the
neural network was generated. [Zhu14]

7.2. Evaluation framework

Although there already was a framework for evaluating the playing strength of AIs
within KSquares, a new improved version was developed for this thesis. In contrast to
the first evaluation framework, the new one provides a user interface that presents the
current progress of evaluation and offers functionality to create human readable evalu-
ation reports in the markdown format. Additionally it provides an interface to analyze
games and provides the option to count the occurrences of Double Dealing.

In the new framework there are two modes of operation that use different Dots and
Boxes engines. Firstly there is the slow, visual mode that utilizes the same engine
as the normal KSquares interface for playing Dots and Boxes. Secondly there is the
fast, multi-threaded mode that does not display games but instead focuses on fast
execution of many games in parallel. Both modes feed the same result storage, which
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facilitates a thorough record of played games and associated events like any errors that
occurred.

7.3. Replicating the presented results

The following sections present the approach and results of experiments that evaluate
the playing strength and other properties of various neural networks and of their com-
bination with Monte-Carlo Tree Search. The experiments are designed to provide an-
swers to the posed research questions. Before presenting the experiments, this chapter
explains how the neural networks can be created, trained and evaluated by providing
instructions on how to easily replicate the experiments. To ensure that the experiments
are easily reproducible, they are made available in a Docker Image. The Docker Image
and instructions on how to run it are available at the following address:

https://tom.vincent-peters.de/master/

The integrity of the downloaded Docker Image can be verified by computing the SHA
256 hash of the downloaded image as shown in the first line and comparing it with
the value presented in the second line.

1 shasum -a 256 ksquares.tar.gz
2 5d301d5b5ec33ae082ae2d10987a57b60565adb87fc0a905de184802519c3180

Besides the Docker Image, the website also provides a detailed technical documen-
tation of KSquares and AlphaDots, including command line arguments and in-depth
descriptions of the implemented neural networks.

7.4. Preliminary experiments

During the development of the replicated AlphaZero algorithm, a wide range of ex-
periments was conducted to check the viability of the implemented methods. First
efforts were directed towards designing a working neural network and providing the
necessary training data. Afterwards the focus moved to implementing, testing and
verifying the Monte-Carlo Tree Search algorithm.

In the beginning, data generators and artificial neural networks were designed in par-
allel. While the data generators are integrated in KSquares to utilize available rule
based AIs, the neural network architectures were explored using Jupyter Notebooks
that are able to store notes about the design besides the actual code that instantiates
and trains the networks. During development the design of the data remained rela-
tively stable, while the neural network architecture underwent diverse changes until
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it settled on a design that closely matches AlphaGo Zero’s architecture but lacks the
final dense layer. Early attempts at designing a neural network used a low number of
layers, no skip-connections and relied on a loss function that operated on each pixel
individually. Yielding poor results, the early network designs were deemed insuffi-
cient. After adapting a network architecture based on Res Blocks and a specialized
output layer, the evaluation results show that the networks are able to approximately
capture the playing strength inherent to their training data. A far more detailed de-
scription of the network architectures is available in section 6.4 where First Try, Stage
One, Basic Strategy and LSTM are the working titles of the early, unsuccessful architec-
tures. Network architectures AlphaZero version 1 to 6 only have a policy output that
is supplemented by a value output in version 7 and higher. There are more AlphaZero
networks that received various amounts of training. Table 3 shows the performance
of selected incarnations of the examined network architectures. Each network played
1,000 games against Easy, Medium and Hard each on a 5 × 5 boxes board to assess
their playing strength.

Model Wins vs. Easy Wins vs. Medium Wins vs. Hard

FirstTry 0.2 % 0.2 % 0.1 %
BasicStrategy 57.9 % 24.3 % 5.0 %
StageOne 5x5 0.9 % 0.4 % 0.3 %
AlphaZeroV1 80.0 % 72.4 % 37.9 %
AlphaZeroV5 89.6 % 84.0 % 48.7 %
AlphaZeroV7 94.6 % 85.9 % 46.3 %

Table 3: Preliminary model evaluation results on a 5 × 5 boxes board

Reproducing the results in table 3 can be accomplished with the mentioned Docker
Image by starting it with the parameter PreliminaryModelEvaluation. The win rates
for the FirstTry and StageOne model are very poor, while BasicStrategy plays slightly
better than Easy. Nevertheless BasicStrategy’s results are inferior since it was trained
on data generated with the Hard AI and should thus be able to beat Easy and Medium
with a comfortable margin. By increasing the amount of training, the AlphaZero
networks can reach the approximate playing strength of their paragon. As the results
indicate, AlphaZero version 1 received the least amount of training, while version 5

and 7 saw increasingly more examples.

After finding a viable network architecture, the Monte-Carlo Tree Search algorithm
was implemented. To verify that the algorithm works as expected, it was repeatedly
run on board configurations that were devised by Elwin Berlekamp and described
in his book [Ber00] about Dots and Boxes. A central test case to debug the MCTS
algorithm was the board shown in figure 6 because the only winning move is to make
a preemptive sacrifice. Making preemptive sacrifices is central to an expert strategy in
Dots and Boxes. Furthermore it is not taught to the neural network, because the Hard
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AI, which is used to generate training data, does not know how to make preemptive
sacrifices. Thus the referenced board served as a representative example for the ability
of the MCTS algorithm to improve the policy provided by the neural network. Due
to the example’s small board size, it was possible to manually check the values in the
generated Monte-Carlo tree for errors.

In a first attempt to assess the network’s performance on different board sizes, the
neural network AlphaZero version 7, which was trained on boards with a maximum
size of 5 × 4 boxes, is evaluated on increasingly larger board sizes. Beginning with 5

× 5 boxes boards, it plays 1,000 games each against the Easy, Medium and Hard AIs
on ever larger quadratic boards up to 15 × 15 boxes.

Model Board size Wins vs. Easy Wins vs. Medium Wins vs. Hard

AlphaZeroV7 5x5 95.2 % 86.2 % 46.7 %
AlphaZeroV7 6x6 94.3 % 68.1 % 32.9 %
AlphaZeroV7 7x7 92.3 % 51.2 % 19.4 %
AlphaZeroV7 8x8 88.1 % 33.9 % 9.6 %
AlphaZeroV7 9x9 84.8 % 24.5 % 5.2 %
AlphaZeroV7 10x10 80.8 % 13.4 % 1.5 %
AlphaZeroV7 11x11 73.9 % 8.3 % 0.5 %
AlphaZeroV7 12x12 67.1 % 3.8 % 0.2 %
AlphaZeroV7 13x13 62.3 % 1.8 % 0.9 %
AlphaZeroV7 14x14 49.2 % 0.9 % 0 %
AlphaZeroV7 15x15 43.0 % 0.3 % 0 %

Table 4: Results of AlphaZero version 7 playing on increasingly larger quadratic Dots
and Boxes boards

Launching the Docker Image with the parameter BoardPerformance will reproduce
the listed results.

7.5. Berlekamp’s tests

In his book about Dots and Boxes [Ber00], Elwyn Berlekamp has provided a wide
range of solved and unsolved boards. To develop and debug the Monte-Carlo Tree
Search algorithm, 13 boards from chapter 3 have been used. Table 5 shows the selected
tests, including the correct solutions as dashed lines. Some tests have more than one
correct solution – in these cases each dashed line is a valid solution to the posed
problem.

Berlekamp’s tests require advanced strategies to be solved correctly. For example
already the third test needs a Preemptive Sacrifice to be solved. Consequently they
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provide a useful basis to verify the correct operation of Monte-Carlo Tree Search and
an option to assess the abilities of the raw neural network output.

Test 1 Test 2 Test 3 Test 4

Test 5 Test 6 Test 7

A B A

Test 8 Test 9 Test 10

Test 11 Test 12 Test 13

Table 5: Selected test boards from Elwyn Berlekamp’s book [Ber00] with solutions
marked as dashed lines

The following table shows the ability to solve Berlekamp’s tests of the AlphaZeroV7
network and of one network that was created in the Competition experiment described
in section 7.8. Both networks are tested for their raw performance and for their abilities
when combined with Monte-Carlo Tree Search. In the table a passed test is marked
with an S for successful, while a failed test is marked with F. The results show that
Monte-Carlo Tree search solves more tests correctly than the neural networks in direct
play. Furthermore they show that MCTS is sensitive to the abilities of the underlying
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neural network.

Test
AI 1 2 3 4 5 6 7 8 9 10 11 12 13

AlphaZeroV7 F S F F F S F S S S S F F
AlphaZeroV7-MCTS S S S S S S S S S S S S F
AlphaZero-Comp-SP F S F F S S F S S F S F F
AlphaZero-Comp-SP-MCTS S S S S S S F F S S S S F

Table 6: Test results on Berlekamp’s tests for neural networks in direct play and in
combination with MCTS

Running the Docker Image with the argument Berlekamp will reproduce the re-
sults.

7.6. Performance on Large Boards experiment

Leaning on the preliminary experiment that evaluated AlphaZero version 7 on increas-
ingly larger boards, this experiment first trains two networks and then evaluates them
on various board sizes. There are two networks in this experiment that share the same
AlphaZero architecture – both are made of 8 res-blocks and have convolutional layers
with 256 filters and 3 × 3 kernels. Network A is trained on 2,000,000 samples of 10

× 10 boxes boards, while network B is trained on 2,000,000 samples of 5 × 4 boxes
boards.All boards were generated with the Stage Four generator using the Hard AI. A
major difference between A and B is the time it takes to generate the training data. For
quadratic boards with a side length of n boxes, the number of lines L can be calculated
as follows:

L = 2n2 + 2n

The number of lines increases exponentially relative to n and as a result, it takes far
longer on average to generate a sample of a 10× 10 boxes board than it takes for a 5× 4

boxes board. Generating a single 5 × 4 boxes sample took 0.6 milliseconds on average,
while it took 28 milliseconds to generate a 10 × 10 boxes sample. Consequently it
takes 20 minutes to generate 2,000,000 million 5 × 4 samples and more than 15 hours
to generate the same number of 10 × 10 samples. After training, both networks are
evaluated in direct play on quadratic boards ranging from 3 × 3 boxes to 15 × 15

boxes. Table 7 shows the results.

Model Board Wins vs. Easy Wins vs. Medium Wins vs. Hard

AlphaZero-A-10x10 3 × 3 36.3 % 28.3 % 27.7 %
AlphaZero-A-10x10 4 × 4 34.3 % 32.2 % 27.5 %
AlphaZero-A-10x10 5 × 5 40.5 % 44.0 % 32.1 %
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Model Board Wins vs. Easy Wins vs. Medium Wins vs. Hard

AlphaZero-A-10x10 6 × 6 31.4 % 46.0 % 26.3 %
AlphaZero-A-10x10 7 × 7 32.3 % 44.6 % 27.4 %
AlphaZero-A-10x10 8 × 8 23.8 % 46.6 % 18.9 %
AlphaZero-A-10x10 9 × 9 23.0 % 47.6 % 19.5 %
AlphaZero-A-10x10 10 × 10 17.8 % 45.7 % 15.2 %
AlphaZero-A-10x10 11 × 11 17.7 % 48.3 % 15.0 %
AlphaZero-A-10x10 12 × 12 12.6 % 48.6 % 9.3 %
AlphaZero-A-10x10 13 × 13 11.0 % 45.5 % 8.2 %
AlphaZero-A-10x10 14 × 14 8.7 % 45.2 % 4.8 %
AlphaZero-A-10x10 15 × 15 7.6 % 46.4 % 4.4 %

AlphaZero-B-5x4 3 × 3 37.0 % 29.1 % 28.3 %
AlphaZero-B-5x4 4 × 4 52.0 % 49.1 % 31.9 %
AlphaZero-B-5x4 5 × 5 61.5 % 63.7 % 38.9 %
AlphaZero-B-5x4 6 × 6 57.8 % 63.0 % 30.5 %
AlphaZero-B-5x4 7 × 7 57.9 % 63.0 % 27.6 %
AlphaZero-B-5x4 8 × 8 59.9 % 59.2 % 22.8 %
AlphaZero-B-5x4 9 × 9 56.8 % 60.6 % 16.8 %
AlphaZero-B-5x4 10 × 10 61.1 % 60.5 % 12.1 %
AlphaZero-B-5x4 11 × 11 55.7 % 57.3 % 9.5 %
AlphaZero-B-5x4 12 × 12 51.5 % 57.3 % 6.6 %
AlphaZero-B-5x4 13 × 13 59.8 % 55.4 % 4.7 %
AlphaZero-B-5x4 14 × 14 55.9 % 57.1 % 3.7 %
AlphaZero-B-5x4 15 × 15 55.7 % 52.6 % 2.9 %

Table 7: Large Board experiment (version 2018-10-18) direct play results for 1,000

games each against the Easy, Medium and Hard AI on various board sizes

The results in table 7 show that version A, which was trained on 10 × 10 boards, per-
forms significantly worse than version B, which was trained on 5 × 4 boxes boards. As
a matter of fact, version A shows a curious inconsistency in playing strength – it loses
against the Easy AI more often than against the Medium AI. This is unexpected since
the Easy AI offers more opportunities to win the game than the Medium AI, hence it
should be easier to defeat than the Medium AI. A possible reason for the weakness
against the Easy AI is that games with it produce situations that stray too far from
optimal play. The Easy AI opens random chains and thus can create board configura-
tions where a long chain can be captured while there still are short chains available.
Since a neural network does not understand the game but instead applies rules it gath-
ered from large amounts of training data, it is confused by such situations and might
not fully capture a long chain and open a short chain instead. To verify the “confu-
sion theory”, a simple test case was designed that tries to reproduce the described
erroneous behaviour. Figure 25 shows the test board and the reaction of the AlphaZe-
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roV14 network and the AlphaZero-Competition-2018-10-28-23-44-19-SP network. Both
networks fail to make the right call and fully capture the long chain. AlphaZeroV14 di-
rectly opens the short chain, while AlphaZero-Competition-2018-10-28-23-44-19-SP first
captures two boxes of the long chain before it opens the short chain. The behavior of
both networks confirms the confusion theory and consequently provides a reason for
the deficiencies against the Easy AI.

B

B

Input board AlphaZeroV14 AlphaZero-Competition-
2018-10-28-23-44-19-SP

Figure 25: Board for the ”confusion theory“ test case and the moves of two neural
networks

Considering the results of network B in table 7, it is clear that B has captured key
strategies of the game as it is able to consistently beat the Easy and Medium AI even on
very large boards in more than half of the games. An apparent reason for the success
of network B is that it was trained on small boards and was thus able to see many
essential configurations and consequently derive general strategies, while network A
was not able to focus on the important part of the game. Besides the powerful playing
strength, network B also beats the training time by an order of magnitude.

To verify the results, the experiment was executed a second time with training on
slightly diverging board sizes. Network C was trained on 2,000,000 samples of 8 ×
8 boxes boards while network D was trained on 2,000,000 samples of 5 × 5 boxes
boards. Table 8 shows the results of network C and D. Depending on the board’s
size it is possible that a game ends in a draw, which is not counted towards the win
rate.

Model Board Wins vs. Easy Wins vs. Medium Wins vs. Hard

AlphaZero-C-8x8 3 × 3 36.6 % 25.9 % 32.2 %
AlphaZero-C-8x8 4 × 4 34.0 % 33.8 % 26.3 %
AlphaZero-C-8x8 5 × 5 47.1 % 43.2 % 30.3 %
AlphaZero-C-8x8 6 × 6 42.8 % 42.2 % 25.5 %
AlphaZero-C-8x8 7 × 7 48.1 % 47.5 % 24.0 %
AlphaZero-C-8x8 8 × 8 42.4 % 45.5 % 19.1 %
AlphaZero-C-8x8 9 × 9 42.7 % 50.6 % 16.5 %
AlphaZero-C-8x8 10 × 10 39.7 % 46.2 % 13.9 %

AlphaZero-D-5x5 3 × 3 41.6 % 29.4 % 31.8 %
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Model Board Wins vs. Easy Wins vs. Medium Wins vs. Hard

AlphaZero-D-5x5 4 × 4 42.0 % 36.9 % 24.0 %
AlphaZero-D-5x5 5 × 5 56.3 % 55.7 % 34.7 %
AlphaZero-D-5x5 6 × 6 54.7 % 54.6 % 27.9 %
AlphaZero-D-5x5 7 × 7 49.8 % 56.2 % 24.3 %
AlphaZero-D-5x5 8 × 8 50.1 % 51.0 % 20.6 %
AlphaZero-D-5x5 9 × 9 52.3 % 56.2 % 18.3 %
AlphaZero-D-5x5 10 × 10 49.3 % 53.9 % 14.0 %

Table 8: Large Board experiment (version 2018-10-20) direct play results for 1,000

games each against the Easy, Medium and Hard AI on various quadratic board
sizes

As network C and D were trained on boards that differ less in size than those of
network A and B, the results of C and D are closer together. Nevertheless the trends
that were observed in table 7 are also visible in table 8 but to a lesser extent. Network
C, which was trained on training data made of large boards, still wins less often against
the Easy AI than against the Medium AI on certain board sizes. Furthermore network
D has a consistently higher rate of success.

This experiment can be reproduced by running the mentioned Docker Image with the
command line argument LargeBoards. The results will be available in the associated
Docker Volumes.

7.7. New Strategies experiment

This experiment creates two fully convolutional AlphaZero networks as described in
section 6.4.3, which are each made of 8 res-blocks with convolutional layers that have
256 filters and 3 × 3 kernels. In the beginning the first network is trained on data that
was generated by the Medium AI. This means that the network does not know about
Double Dealing as it is only trained on data that fully captures chains. Afterwards the
network’s weights are copied to the second network so that the second network can
be further trained in self-play, while the first network retains its original state that was
only trained on rule-based data. Finally an evaluation checks if the network learned
Double Dealing in self-play reinforcement learning.

For the first part, a newly created network is trained on data that was generated
with the StageFour dataset generator using the Medium AI. The network is trained on
4,000,000 samples of 3 × 3 boxes boards. To make sure that the network does not know
about Double Dealing, the experiment activates a specially crafted analysis module
that detects instances of Double Dealing. After the training is done, the experiment
executes a short evaluation to verify that the network does not apply Double Dealing.
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Table 9 shows that the network plays on the level of the Medium AI and that not a
single instance of Double Dealing was detected.

Wins vs. Wins vs. Wins vs. Double
Model Easy Medium Hard Dealing

AlphaZero-NewStrat 75.3 % 50.5 % 20.4 % 0

Table 9: New Strategies experiment (version 2018-10-29) direct play results for 1,000

games each against the Easy, Medium and Hard AI on a 3 × 3 boxes board

For the second part of this experiment, the initialized network is trained in self-play
on 3 × 3 boxes boards. Coming from a state where it has not seen Double Dealing,
it is used to support Monte-Carlo Tree Search in finding strong moves. In this exper-
iment, Monte-Carlo Tree Search is configured to operate on a per-line basis – using
move sequences is disabled so MCTS does not have knowledge of the strategies that
are encoded in the move sequences. Disabling move sequences is important, because
the move sequence generator knows about Double Dealing and one of its prominent
features is to generate chain capturing sequences that end in Double Dealing. Monte-
Carlo Tree Search is run for 1,000 iterations using the currently best network to gen-
erate a single sample. For one iteration of self-play, the experiment generates 512

samples with MCTS, which are then used to train the network in 5 epochs using data
augmentation as described in section 6.3.3. After training, the self-play iteration is
concluded with an evaluation where the best network is evaluated against the newly
trained one in direct play (i.e. without MCTS) in 1,000 games. If the contending net-
work won at least 500 games, it becomes the new best network. If the contending
network did not win, it will be used as the starting point for training in the next itera-
tion but not to generate data. This self-play process is repeated for 20 iterations.

After self-play, the resulting network is evaluated against the Easy, Medium and Hard
AI on 3 × 3, 5 × 5 and 15 × 15 boxes boards. Table 10 shows the results of both
networks in direct play for 10,000 games each against the Easy, Medium and Hard
AI on 3 × 3, 5 × 5 and 15 × 15 boxes boards. Especially the result of direct play
against the Hard AI on the 3 × 3 boxes board shows a significant improvement with
the win rate increasing from 21.17 % for the initial network to 46.21 % for the network
that was trained in self-play. Analysis of Double Dealing shows that the network has
learned to apply the strategy by using self-play reinforcement learning. Furthermore
it is evident that the network heavily forfeits playing strength on a larger board. The
most likely explanation for this is that larger boards offer exponentially more chances
to make a wrong move that can be exploited by the rule based AIs. This might also
explain the 76 instances of Double Dealing on the 5 × 5 board and the 779 instances
of Double Dealing on 15 × 15 board – the network simply applied Double Dealing in
error because larger boards offer more chances to make mistakes.
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Wins vs. Wins vs. Wins vs. Double
Model Board Easy Medium Hard Dealing

AlphaZero-NewStrat 3 × 3 75.89 % 50.59 % 21.17 % 0

AlphaZero-NewStrat-SP 3 × 3 76.54 % 72.62 % 47.21 % 7,853

AlphaZero-NewStrat 5 × 5 82.12 % 27.71 % 5.17 % 76

AlphaZero-NewStrat-SP 5 × 5 71.33 % 37.52 % 8.45 % 6,908

AlphaZero-NewStrat 15 × 15 9.76 % 0 % 0 % 779

AlphaZero-NewStrat-SP 15 × 15 5.96 % 0.02 % 0 % 4,669

Table 10: New Strategies experiment (version 2018-10-29) direct play results for 10,000

games each against the Easy, Medium and Hard AI on 3 × 3, 5 × 5 and 15

× 15 boxes board

This experiment can be reproduced by running the mentioned Docker Image with the
command line argument NewStrategies. The results will be available in the associated
Docker Volumes.

7.8. Competition experiment

This experiment tries to train a neural network that plays Dots and Boxes on a board
with 5 × 5 boxes as well as possible. First, it creates a fully convolutional AlphaZero
network from scratch.Section 6.4.3 describes the design details of the network archi-
tecture. Specifically the network has 8 res-blocks featuring 256 filter maps in each
convolutional layer with a kernel size of 3 × 3.

During the first part of the experiment, the initial network is trained for one epoch on
4,000,000 examples of 5 × 4 boards that were generated with the StageFour dataset
generator using the Hard AI. Afterwards, the resulting network is copied to create a
second network which acts as the starting point for self-play training.

For one iteration, the self-play mode starts to generate 512 samples using Monte-
Carlo Tree Search with the best neural network. Using the newly generated samples,
the newest network is trained cumulatively on the augmented data for five epochs,
thus creating a contending network. The best network plays 1,000 games against the
contending network in direct play. If the contending network wins at least half of the
games, it becomes the new best network. This process is repeated for 32 iterations to
create AlphaZero-Comp-SP.

For a second run of self-play training with different parameters, the initial network is
copied again to create another starting point for self-play training. In this round, the
training does not use move sequences and only runs Monte-Carlo Tree Search with
1,000 iterations instead of the default number of 1,500 iterations. Self-play is run for
32 iterations, creating AlphaZero-Comp-SPv2.
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Finally, both networks trained in self-play and the initial network, that was only
trained on Hard AI data are evaluated against the Hard AI, the Alpha Beta AI (αβ)
from the Bachelor’s thesis, Dabble and QDab, which is the best AI for Dots and Boxes
according to [Pet15]. All AIs were allowed a maximum time of 10 seconds per move.
Table 11 shows the results of the evaluation. They show that the AlphaZero-MCTS AIs
are inferior to the other search based algorithms. With the setup of this experiment,
AlphaDots does not reach state of the art performance.

Wins vs.
Model Easy Medium Hard αβ Dabble QDab

AlphaZero-Comp 69 % 68 % 39 % 18 % 0 % 0 %
AlphaZero-Comp-MCTS 95 % 83 % 66 % 10 % 0 % 0 %
AlphaZero-Comp-SP 50 % 60 % 31 % 12 % 0 % 0 %
AlphaZero-Comp-SP-MCTS 94 % 89 % 58 % 9 % 0 % 0 %
AlphaZero-Comp-SPv2 36 % 58 % 33 % 12 % 0 % 0 %
AlphaZero-Comp-SPv2-MCTS 95 % 85 % 52 % 16 % 0 % 0 %

Table 11: Competition experiment (version 2018-10-28) direct play results for 100

games each against the Easy, Medium, Hard, Dabble and QDab AI on a 5

× 5 boxes board
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8. Results

This section provides answers to the initially stated research questions on the basis of
the evaluation results and other findings of this thesis.

8.1. Using less resources

The core of this thesis was to devise and evaluate methods to replicate the AlphaZero
search and reinforcement learning algorithm while using far less resources. In an
attempt to find out how to get tractable results with less computational power, the
first step was to conceive a neural network architecture that could transfer strategies
it learned on small boards to big boards. Further effort went into modifying the self-
play reinforcement learning methodology to quickly yield improved playing strength.
Instead of playing full games with MCTS and uniformly sampling from the generated
data as is done in AlphaGo Zero, AlphaDots generates board configurations with a
focus on the forming phase of Dots and Boxes and then executes MCTS on those
boards. As described in section 6.2.5 the training data still covers all parts of the game,
but provides more samples for the important phase of the game.

Evaluation has shown that it indeed is possible to train a neural network on small
boards and have it play well on much bigger boards. Based on the results of the Large
Boards experiment in section 7.6 it can be said that the neural network can be trained
far faster on small boards while reaching superior results when compared to networks
trained on large boards. It is clear that training on small boards conveys the key
strategies to the neural network without distractions and thus enables it to transfer
the strategies to situations with far higher complexity. A probable explanation for
this success is that small boards are less complex so that the generated data covers all
important situations many times, consequently providing ideal conditions for a fully
convolutional neural network to grasp the crucial principles that underlie Dots and
Boxes.

Reducing the required resources in self-play reinforcement learning has proven less
successful. Results show that with the prescribed methods the AlphaDots algorithm
does not reach state of the art performance. Although experiments show the general
viability of the implemented approach, it has become clear that it needs at least an
order of magnitude more computational resources to reach state of the art performance
in acceptable time.

8.2. Neural network playing Dots and Boxes on varying board sizes

This research question was about how to design a neural network that is able to play
well on various Dots and Boxes board sizes. In the first place it was about what net-
work architecture enables a network to play on different boards. After successfully
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implementing a working neural network, the question extends to the network’s abili-
ties to transfer strategies learned on one type of board to other types.

For the first part, a fully convolutional neural network was designed that mostly fol-
lows its paragon AlphaZero but uses custom final layers that dislodge a fixed board
size. Section 6.4.3 describes the details of those final layers and Alpha Dot’s network
architecture in general. By modifying AlphaZero’s architecture to be fully convolu-
tional, the first part of this research question was solved successfully.

To answer the second part of how well the network is able to transfer learned strategies
to different board sizes, the results of a range of experiments can be consulted. One
preliminary experiment evaluated an early version of Alpha Dot’s neural network on
various quadratic boards, with results shown in table 4. Although the network was
only trained on small boards, it is able to win more than half of the games against
Easy on large boards up to 13 × 13 boxes. Since the network is fully convolutional, it
manages to capture and apply general strategies in Dots and Boxes.

The Large Boards experiment in section 7.6 compares the performance of networks on
various boards where the networks were trained exclusively on small or large boards.
Networks that were trained on small boards capture general strategies for Dots and
Boxes very well. They are able to learn strategies and apply them in new situations that
vastly differ from their training data in terms of complexity. Conversely the networks
that were trained on large boards struggle to grasp the required strategies.

According to the experiment’s results the networks loose against the Easy AI more
often than against the Medium AI. The results expose that neural networks learn by
example and are not able to actually understand the logic of the strategies they apply.
A simple test in figure 25 shows that the networks fail to act correctly in situations
that do not occur in optimal play – since they have been trained on data generated
with the Hard AI that did not show such situations, they did not know how to react
appropriately. This underlines the importance of providing the neural network with a
diverse range of training data that also strays from the path of optimal play to prepare
the network for unexpected situations.

8.3. Finding new strategies in self-play

For this research question, the goal was to find out if new strategies emerge from self-
play. Given a network that is able to play Dots and Boxes at a basic level, the task is
to train the network in self-play and afterwards verify that it learned to apply a new
strategy. AlphaDots’ self-play reinforcement learning uses Monte-Carlo Tree Search in
combination with a neural network to produce improved training data that is fed to
the neural network.

A first step was to verify that Monte-Carlo Tree Search is able to find better moves than
those directly provided by the supporting neural network. To perform the verification,

67



8. Results

13 test boards from Berlekamp’s book [Ber00] have been used. The test results in table
6 show that the neural networks fail to find the right move on 7 boards, especially
when they have to make a preemptive sacrifice. Conversely Monte-Carlo Tree Search
is able to pass almost all tests, thus demonstrating its ability to find stronger moves
than the supporting neural network.

A more substantial positive answer to the posed research question is provided by
the results of the New Strategies experiment described in section 7.7 where a network
learned a new strategy in self-play that was not taught in training. In the experiment,
the network was trained on data that did not contain Double Dealing moves. Using
the Double Dealing analysis module in the evaluation framework, it was verified that
the network does not apply Double Dealing. After it was trained in self-play on 10,240

examples for 5 epochs, the network is able to apply Double Dealing without MCTS
and also exhibits significantly improved playing strength.

The results show that the AlphaDots self-play reinforcement learning algorithm is able
to improve the playing strength. Nevertheless the Competition experiment shows that
the amount of applied self-play reinforcement learning is nowhere near enough to
reach state of the art performance.

8.4. Playing strength of AlphaDots

As the Competition experiment has shown, AlphaDots does not reach state of the art
performance with the given amount of training. AlphaDots does not stand a chance
against Dabble or QDab, which are two of the best AIs for Dots and Boxes.

Previous experiments and tests have shown that the algorithm works in principle. To
create a version of AlphaDots that reaches a higher playing strength, it should be
trained on more data that covers a diverse set of situations. During the Competition
experiment, the neural network was trained on 16,384 samples generated by Monte-
Carlo Tree Search, which is a very small amount of training data. In the New Strategies
experiment it was shown that about 10,000 samples are enough for the network to
learn Double Dealing. Practically every game of Dots and Boxes played by experts
features Double Dealing and as a consequence many of the 10,000 samples train the
network to apply Double Dealing. In contrast to learning Double Dealing, the moves
required to learn more advanced strategies like preemptive Sacrifices can not be gener-
ated as easily. A manual inspection of 512 generated samples has uncovered that there
are almost no samples that teach the network to make Preemptive Sacrifices.

With more computational resources available, it would be interesting to follow the
path of AlphaZero where the neural network is trained from scratch in self-play. As a
result of providing no rule based training data, the data generated by self-play should
cover a very broad range of possible situations and therefore prepare the network well
for every situation. Although this procedure requires a large amount of computational
resources, it will most probably lead to state of the art performance.
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9. Conclusion

To conclude this thesis, a short summary presents the major results of this work.
Ultimately a section about possible future work presents aspects that have not been
covered yet.

9.1. Summary

This thesis set out to find ways to replicate the success of AlphaGo Zero to the game
of Dots and Boxes while using far less resources. A central part that permeates all
design decisions that were made during realization of the replication process was to
require as few resources as possible by various means. First there is the change of
the network architecture to be fully convolutional by adding custom layers that enable
operation on any board size. Moreover there is a novel way to generate training
data – using a non-uniform distribution to direct the focus on the important part of
the game, the generator produces a random board state on which Monte-Carlo Tree
Search is executed. Utilizing the fully convolutional architecture of the neural network
enables a training paradigm that operates on small boards and efficiently teaches the
network important strategical aspects of Dots and Boxes, thus saving resources when
generating data and training the network.

By using self-play reinforcement learning, AlphaDots can improve itself. It was shown
that it is able to find new strategies that it has not seen before and consequently reach
a higher level of expertise in Dots and Boxes. A final evaluation against QDab – the
best AI for Dots and Boxes – has shown that AlphaDots does not reach state of the art
performance in Dots and Boxes with the given amount of training in self-play. With
more resources for self-play training it should be possible to reach state of the art
performance.

9.2. Future work

The method of learning to play a game on small boards and transferring the learned
strategies to bigger boards could be applied to other games where it is possible to play
on various board sizes. Most prominently, the presented method can be applied to
Go, because it is possible to play the game on boards of arbitrary size. Training a fully
convolutional neural network on small Go instances will probably yield shortened
training time due to the heavily reduced complexity of the data.

It would be interesting to find out if the weights that were learned by AlphaDots match
the hand crafted features used by QDab. In image processing applications, deep neu-
ral networks often learn filters that match manually defined kernels of convolutional
image operations like the Sobel Operator. [DH73] A viable approach could be to try
to translate the learned kernels of AlphaDots into operations on chains as they were
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presented in the paper about QDab. [Zhu14] If successful, it would be possible to
compare the learned kernels with the manually crafted features in QDab.

As of writing this thesis, there is no proof for the complexity of Dots and Boxes. For
Chess and Go is was proven in the early 1980s that it is Exponential Time Complete
to find an optimal strategy for an n× n board. [FL81; Rob83] Since there is no such
proof for Dots and Boxes it would be interesting to formally assess the complexity of
finding an optimal strategy for an n× n board.
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